好心情说说吧,你身边的情绪管理专家!

好心情说说专题汇总 心情不好怎么办

励志的句子

【#范文大全# #平行四边形的面积课件十一篇#】在网络上看到了一篇非常好的文章,内容是关于“平行四边形的面积课件”。非常欢迎您参考并深度阅读。在教学过程中,老师需要提前准备好教案课件。设计教案的过程中,要注重对学生的关爱和支持。

平行四边形的面积课件(篇1)

内容简析:

平行四边行的面积是人教版五年级上册第六单元第一节内容,本视频以面积公式的推导和公式的应用为主要内容。

教学目标:

1、使学生经历探索平行四边形面积计算公式的推导过程,渗透转化的思想。

2、掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

教学重点:

探索并掌握平行四边形的面积计算公式,渗透转化的思想。

教学设想:

学习完平行四边行的面积,接下来要学习三角形、梯形的面积。所以通过这个视频要给学生渗透转化的思想,为下节课的学习打好基础。让学生理解、领悟,体验计算公式的推导生成显得尤为重要。

教学过程:

一、复习引入

同学们三年级时我们学习了长方形、正方形的面积,今天我们一起来研究平行四边形的面积。

二、质疑猜想

师:对于面积,大家并不陌生。我们已经学过长方形和正方形等平面图形的面积,例如:长方形的面积=长×宽。

质疑:平行四边形的面积怎样计算得出呢?

三、操作验证

用数方格的方法发现长方形和平行四边形的面积相等。要求:不满一格的算半格。

2、验证面积=底×高

那平行四边形的面积与底和高会不会有关系呢?现在我们利用转化的方法来验证一下。

将平行四边形沿着底边上的任意一条高剪开,平移,可以拼成一个长方形。则平行四边形的面积就是长方形的面积,平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。长方形的面积=长×宽,所以平行四边形的面积=底×高。如果用字母S表示面积,a表示底,h表示高。则S=ah。

四、公式应用

学会了平行四边形的面积公式,我们可以用它来解决生活中的一些实际问题。

有一个平行四边形的草坪,底是6米,高是4米,它的面积是多少?

S=ah=6×4=24(平方米)

五、全课总结

回想一下刚才我们的学习过程,你有什么收获?

平行四边形的面积课件(篇2)

设计理念: 《数学课程标准》指出:“学生学习应当是一个生动活泼的、主动的和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式。”本节课通过动手操作、观察比较、小组合作等数学活动、给学生提供充足自主探索和观察交流的机会,探究平行四边形的转化过程,交流平行四边形面积公式的推导过程?引导学生由果究因,在操作中相互启发,促进思考,悟出平行四边形的面积等于底乘高,突破本课难点。进而渗透“转化”思想,培养学生的观察分析、抽象概括和推导能力,形成空间观念。 教学内容: 人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》P79-81页。 学情与教材分析:     本节内容是在学生掌握了面积概念和面积单位,长方形、正方形的面积计算,以及认识平行四边形特征的基础上进行教学的,是进一步要学习三角形的面积、梯形的面积、组合图形的面积及六年级圆的面积与立体图形表面积的基础,在整个教材体系中起着承上启下、举足轻重的作用。五年级的小学生虽然已经具有了一定的知识与生活经验,但知识和认知水平还存在一定的局限性,空间想象能力不够丰富,对图形的转化、公式的推导会有一定的难度。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成的过程。 教学目标: 1、创设生活情境,感受数学与生活的密切联系,激发求知欲望。 2、经历平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算公式,会计算平行四边形的面积并应用公式解决相关实际问题。 3、通过动手操作、观察比较、小组合作等数学活动,渗透转化的数学思想方法,培养学生的观察分析、抽象概括和推导能力,形成空间观念。 教学重点: 掌握平行四边的面积计算公式,会应用公式解决相关实际问题。 教学难点: 理解平行四边形面积计算公式的推导过程。 教学准备: 教具:多媒体课件、平行四边形活动框架、板贴。 学具:平行四边形卡片、剪刀、三角尺、文具(铅笔、橡皮等) 教学流程: 一、创设情境,揭示课题 1、出示课本P79主题图 2、观察、思考:仔细观察找一找图中有哪些是你们学过的图形? 3、猜测、比较:这两个花坛中哪个面积大吗?你是怎样比较的? 4、数方格验证: 老师把这两个花坛画到方格纸上,用数方格的方法数出它们面积各是多少?注意:这里的每个方格表示1平方米,不满一格的都按半格计算。 5、揭示课题(板书:平行四边形的面积) 【设计意图:让学生在现有的知识水平中用数方格比较两个花坛的面积大小,如果不数方格平行四边形的面积该怎样计算呢?从而产生认知冲突,来激发学生积极探求知识奥秘的欲望,感受数学与生活的联系。】 二、合作交流,探究新知 1、猜一猜:平行四边形面积可能与什么有关?怎样计算? 【学情预设:学生根据已有的知识经验长方形的面积等于长乘宽,学生可能会猜测出两种情况。猜想1:平行四边形的面积等于相邻两边的乘积;猜想2:平行四边形的面积等于底乘高】 2、动手操作,验证猜想 (1) 验证猜想1:平行四边形的面积等于相邻两边的乘积。 动手演示:拿出一个平行四边形框架,动手拉一拉,你发现了什么?(邻边长度没变,面积变了,所以平行四边形的面积不等于相邻两边的乘积) (2)验证猜想2:平行四边形的面积等于底乘高。 师:看来平行四边形的面积等于相邻两边的乘积这个猜想是错误的?那会不会等于底乘高呢?研究这方面知识,我们可以化未知为已知,这里运用了一种重要的数学思想方法――转化,现在,请同学们继续观察,可以转化成了什么图形?转化成长方形究竟能不能研究出平行四边形的面积呢? ①  剪一剪,拼一拼 操作要求:各小组现商量后拿出学具袋中的平行四边形卡片、剪刀进行剪一剪、拼一拼!(分组操作,教师巡视)。 ②  交流汇报 【学情预设:学生在动手操作后可能会出现三种情况:1、从平行四边形的一个顶点画一条高剪开,分成一个直角三角形和一个直角梯形平移拼成了长方形。2、任意画平行四边形的一条高剪开,分成两个直角梯形平移拼成一个长方形。3、取两边中点画垂线剪开,剪出两个小直角三角形,旋转后拼成一个长方形。】 这几种方法有什么共同点? ③  课件演示 同学们都把平行四边形沿着一条高剪开(点击课件),平移、拼都可以把把平行一个四边形转化成一个长方形。在操作过程中运用了一种重要的数学思想方法――转化,这种方法在以后的学习中还会经常用到。 ④  观察思考 观察:拼出的长方形和原来的平行四边形,你发现了什么?小组讨论并思考: A  拼出的长方形和原来的平行四边形比,面积变了没有? B  拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系? C  能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗? 3、抽象概括    (1)推导公式平行四边形沿着任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。    (2) 用字母表示 师:下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢? (师出示板贴“S=ah”)

平行四边形的面积课件(篇3)

教材分析:

《平行四边形的面积》是人教版新课程标准五年级上册第六单元的内容,平行四边形面积的计算是在学生已经学会并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的运用为学习后面的三角形和梯形面积计算奠定良好的基础。

教学目标:

1、知识与技能:知识与技能:学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

2、过程与方法:学生通过观察,操作,比较经历平行四边形面积公式的推导过程,培养学生的空间观念。

3、情感态度与价值观:通过活动,激发学生学习兴趣,培养学生探究知识的精神,增强学生学习数学的积极性;感受学习数学的快乐。

教学重难点:

教学重点:理解并掌握平行四边形面积的计算公式,能正确计算平行四边形的面积。

教学难点:学生探究平行四边形的面积计算公式的过程中,充分体验转化和建模的数学思想。

教具准备:

课件、平行四边形纸片、剪刀、直尺、三角板等。

学具准备:

3块平行四边形彩色纸片、三角板、直尺、剪刀。

教学过程:

一、创境导入,激发兴趣

由故事引入课堂,王老汉给儿子分地,大儿子一块长方形地,小儿子一块平行四边形地,俩个儿子都认为自已的地少,王老汉没有办法,想让同学们帮他解决这个问题。让学生自己去体验平行四边形面积推导的必要性,从而激发学生的探究欲望。

二、多元学习,操作交流

1、大胆猜想

师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的.面积可能与它的什么有关?

生汇报猜测结果,师随机板书。

师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?激发学生探求知识的兴趣。

2、操作验证

提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

学生动手剪拼(可以小组合作),并在小组内交流。

3、汇报展示

师:你是怎样做的呢?谁愿意上来演示并说一说呢?

(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

生:长方形。

师:怎样剪才能拼成长方形呢?

师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

生再次操作。

4、发现方法

师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

(1)平行四边形转化成长方形,面积变了吗?

(2)方形后的长和宽分别与平行四边形的底和高有什么关系?

(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

实物图片展示拼剪过程同时回答上面的讨论题。

学生一边说教师一边板书:

长方形的面积=长×宽

平行四边形的面积=底×高

5、利用课件回顾公式推导过程

(1)结合课件演示各部分间的相等关系。

(2)指名说说平行四边形面积公式是怎么样推导出来的?

6、学习用字母表示公式。

师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?S=ah

7、记忆公式

如果要求平行四边形的面积,必需要知道哪些条件呢?(底和高),底和高必须相对应。

8、尝试运用

师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?看计算结果与数方格方法求得的面积结果是不是一样?

三、巩固练习,深化运用,

课堂练习是数学教学的主要环节之一,为了新知及时巩固运用,才能得到理解与内化,我分层设计练习题,通过不同练习,巩固计算公式。

四、课堂总结,深化新知

最后,我问同学们,这节课我们学习了什么知识?是怎么来学会这些知识的?通过课堂总结,有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

平行四边形的面积课件(篇4)

教材分析

1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。

2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。

学情分析

五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。

教学目标

(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。

教学重点和难点

教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。

教学过程

一、情感交流

二、探究新知

1、旧知铺垫

(1)、说出平面图形名称并对它们进行分类。

(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)

设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。

2、 导入新课

3、 探究平行四边形面积计算方法。

(1)、在方子格中数出长方形的面积。

(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。

(3)、通过观察表格,试着猜测平行四边形的面积计算方法。

(4)、共同探讨如何计算平行四边形的面积。

①出示平行四边形,引导学生明确其底和高。

②学生在学具上标明其底并画出对应的高。

③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)

④小组交流如何操作的。(割补法)

⑤学生代表汇报各组的操作方法以及得到的结论。

⑥幻灯片演示割补的过程。

⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)

4、 课堂小练笔。

设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。

三、课堂练习

四、小结本课

五、课堂作业

板书设计

平行四边形 面积 = 底 × 高

长方形 面积 = 长 × 宽

S表示平行四边形的面积 a表示底 h表示高

S=a×h s=a.h S=ah

平行四边形的面积课件(篇5)

1.用数方格的方法求平行四边形的面积。

(1)数一数:

①用投影片投影出示下图。(每个小方格代表1平方厘米)

(附图 {图})

②请同学们用数方格(不满一格的都按半格计算)的方法,分别求出图中长方形和平行四边形的面积。

长方形的面积是( )。

平行四边形的面积是( )。

〔评析:直观认识两图形的面积相等〕

(2)比一比:

①长方形的长和平行四边形的底有什么关系?宽和高呢?

②长方形的面积和平行四边形的面积相等吗?

(3)小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

〔评析:通过比较,使平行四边形与长方形联系起来,查明面积相等的原因。认识进一层,为知识的迁移 提供了依据。〕

2.推导公式

(1)投影演示

教师用割补的方法,引导学生把一个平行四边形变成长方形。

(附图 {图})

〔评析:“引导”体现了教师的主导作用。〕

(2)学生操作

学生拿出课前准备好的平行四边形状的卡片,自己动手用剪刀按下面割补的方法,把它变成一个长方形。

(附图 {图})

(割下补在图的右边)

〔评析:任一个平行四边形,通过割补都可以变成和原平行四边形面积相等的长方形。补充一个实例,特 别是学生自己动手,使学生确信无疑。为归纳公式提供了充分的`事实。培养了学生动手操作的能力。人人动手 ,既调动学习积极性,又可面向全体。〕

(3)提问

①割补成的长方形的长和宽与原来的平行四边形的底和高有什么关系?

②割补成的长方形的面积与原来的平行四边形的面积有什么关系?

(4)推导公式

填□:

长方形的面积 =长×宽

↓ ↓

平行四边形的面积=□×□

〔评析:水到渠成,实现知识的迁移。培养了学生推理的能力。〕

(5)验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。

〔评析:前后结果一致,进一步说明公式的正确性。〕

3.自学例1

学生自学例1后,教师根据学生提出的问题讲解。

〔评析:自己动手应用公式计算面积。培养学生解决实际问题的能力。人人都做,又一次体现面向全体学 生。〕

平行四边形的面积课件(篇6)

今天我说课的题目是《平行四边形的面积》。接下来我将从以下四个方面来完成我的说课:

教学内容:本节教学内容是人教版九年制义务教育课程标准实验教科书五年级上册第五单元第一课。

教材所占的地位:本节教材是在学生掌握了面积概念和面积单位,长方形、正方形的面积计算,以及认识平行四边形特征的基础上进行教学的,是进一步要学习三角形的面积、梯形的面积、组合图形的面积及六年级圆的面积与立体图形表面积的基础。可见这节课的内容在整个教材体系中起着承上启下、举足轻重的作用。

学情分析:五年级的小学生虽然已经具有了一定的知识与生活经验,但知识和认知水平还存在一定的局限性,空间想象能力不够丰富,对图形的转化、公式的推导会有一定的难度。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成的过程。

教学目标:根据课程标准、本节课的教学内容及学生实际水平特制定以下教学目标:

1、让学生利用方格纸和割补、拼摆等方法探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。

2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的各种能力。

3、通过活动,激发学习兴趣,培养探索精神,感受数学与生活的密切联系。

教学重点:使学生理解和掌握平行四边形面积公式并会应用。

整节课,我采用新课程努力倡导的“问题情境----猜想---建立模型---验证与解释----应用与拓展”的新型教学模式,主要采用“动手操作、自主探究、自我感悟、合作交流”的学习方式,尽可能让学生充分暴露自己的思维过程,立足“基本”,注重“过程”,不仅使他们“学会”还要使他们“会学”。

为凸显本节课的设计理念、切实高校完成教学目标、突出教学重点、突破教学难点,我设计了如下教学环节:

上课一开始,我就出现我们钢城小学成立50华诞,设计的两个美丽的花坛(同时课件呈现)。请同学们观察,那个面积大?

结果很可能同学们说法不一。接着让他们想有没有更好的比较办法?这时可能其中有的会说先计算面积,再来比较。于是我顺势给出这两个图形的有关数据。让同学们算一算它们的面积各是多少?

结果无法确定。这时,我自然而然导入新课,那到底怎样计算平行四边形的面积呢?今天我们就一同走进平行四边形的面积并随即板书课题:平行四边形的面积

设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。

我首先让同学们回忆推导长方形面积计算公式的方法,然后利用数方格的方法初步探究平行四边形的面积。我让学生采用先独学、再群学、后展示的方式来学习课本80页格子图和表格。让他们看一看、数一数、填一填,比一比,想一想,并说出发现了什么?这时,有的学生可能会说:我发现了这两个图形的面积相等,平行四边形的底等于长方形的长,平行四边形的高等于原来长方形的宽,所以平行四边形的面积可能是底×高。这时我告诉孩子们猜想必须验证,才能使人心服口服。

设计意图:本环节主要通过让学生用数方格的方法,凭借“独学、群学、展示”的渐进过程初步感知平行四边形与长方形面积的联系,同时为下一步的探究提供思路,做好铺垫,很好的培养了学生的联想与猜测能力,。

我首先让同学们想你们已经会用公式算什么图形的面积了?

接下来我让学生把平行四边形转化成长方形。这时同学们跃跃欲试,在小组合作探究的过程中同学们已经知道要按先画,再剪,后拼的顺序进行。(画----剪-----拼)随后,让同学们汇报交流自己的做法,并同时用课件展示,可能有的会说:

我是先沿着平行四边形的一个顶点画一条高,然后沿着高剪下来,这时变成了一个三角形和一个梯形,最后我按住梯形不动,把三角形平移和梯形拼在一起,这样就变成一个我们学过的长方形。(当学生按着先---再-----最后---的顺序回答时,我会大力表扬,告诉学生他说的很有条理,大家一听就明白,这就是逻辑,接下来学生可能会模仿着他的样子来回答)

还有的学生说我先这样画一条高,然后沿着高剪下来,这时变成了两个梯形,最后我按住其中一个梯形不动,把另一个梯形平移拼在一起,同样变成了一个长方形。

接着我继续追问为什么你们一定要沿着高剪开呢?同学们又动起了小脑瓜。

接着我概括小结:刚才用割补、平移法(张贴黑板)我们把平行四边形变成长方形,在这个过程中其实运用了一个伟大的数学思想,那就是“转化”的思想(张贴黑板),所以同学们当你碰到解决不了的问题时,不妨用转化的思想,也许你会豁然开朗,柳暗花明又一村。

设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。

我首先设计了下面四个问题让同学们进行小组合作,讨论交流:(课件出示下面的四个问题)

a、原来的平行四边形转化成长方形后,什么变了?什么没变?

b、拼成长方形的长与原来平行四边形的底有什么关系?

c、拼成长方形的宽与原来平行四边形的高有什么关系?

d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?

结果得出:只是形状变了,平行四边形的面积=长方形的面积;长方形的长等于原来平行四边形的底,长方形的宽等于原来平行四边形的高。又由于长方形的面积=长×宽,所以平行四边形的面积=底×高,

紧接着又让学生自学课本81页,得出平行四边形面积计算公式的字母表达式s=a×h=ah=ah

紧接着我又把问题抛给大家,要计算平行四边形的面积必须知道什么?这样就使学生知道了要求平行四边形的面积必须是对应的底和高。同时我告诉学生,数学说话一定要严谨、准确,不然就会产生歧义。

设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。

基础题:

1、平行四边形花坛的底是6m,高是4m,它的面积是多少?

拓展题:先分别计算下面图中两个平行四边形的面积,然后看你发现了什么?

创新题:想一想,面积为12平方厘米的平行四边形,底和高有可能是多少?(取整厘米数)

设计意图:此练习题量虽然不大,但涵盖了所有的知识面,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。

最后,我问同学们,通过今天的学习,你有什么收获呢?有提醒大家注意的地方吗?

设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。

设计意图:我认为好的板书就好比一篇微型教案,条理清楚,突出重点,使人一目了然,可起到画龙点睛之功效。

最后,恳请各位评委老师批评指正,我的说课到到此结束,谢谢!

平行四边形的面积课件(篇7)

1.用数方格的.方法求平行四边形的面积,数学论文《“平行四边形的面积”教学设计与评析》。

(1)数一数:

①用投影片投影出示下图。(每个小方格代表1平方厘米)

(附图 {图})②请同学们用数方格(不满一格的都按半格计算)的方法,分别求出图中长方形和平行四边形的面积。长方形的面积是( )。平行四边形的面积是( )。〔评析:直观认识两图形的面积相等〕(2)比一比:①长方形的长和平行四边形的底有什么关系?宽和高呢?②长方形的面积和平行四边形的面积相等吗?(3)小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。〔评析:通过比较,使平行四边形与长方形联系起来,查明面积相等的原因。认识进一层,为知识的迁移 提供了依据。〕2.推导公式(1)投影演示教师用割补的方法,引导学生把一个平行四边形变成长方形。(附图 {图})〔评析:“引导”体现了教师的主导作用。〕(2)学生操作学生拿出课前准备好的平行四边形状的卡片,自己动手用剪刀按下面割补的方法,把它变成一个长方形。

平行四边形的面积课件(篇8)

教学目标:

剪、拼、算等实际操作,推导平行四边形的面积计算公式。

2、能应用平行四边形的面积计算公式解决实际问题。

观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。

教学重点:

平行四边形的面积计算公式的推导与应用

教学难点:

理解和掌握用割补法推推导平行四边形的面积计算公式

教具准备:

平行四边形纸、长方形纸、多媒体

学具准备:

平行四边形纸、剪刀、尺子

教学过程:

一、创设情景,引出课题

1、创设情景

同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)

2、引出课题

提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。

二、新课

1、自学,用数方格的方法计算平行四边形的面积。

(1)多媒体出示P80图和表格

(2)读一读数方格时要注意的.地方

(一个方格代表

(3)让学生在电脑上填写表格

(4)提问:观察表格的数据,你发现了什么?

(5)学生汇报。

(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。

2、推导平行四边形的面积计算公式

(1)猜想

如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。

(2)验证

a、动手操作

剪——平移——拼,把一个平行四边形变成一个长方形。

b、讨论:

1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?

2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?

3、平行四边形的面积=?

a、把平行四边形分成一个三角形和一个梯形

b、把平行四边形分成两个梯形

(a、h各表示什么?

(6)齐读公式,加深印象。

3、教学例题

(1)出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

(2)读题,分析已知条件和问题。

(3)独立完成。

(4)在黑板上展示并评析。

三、巩固练习

1、填空

(,这个()的()和平行四边形的底相等,()的()和平行四边形的高相等。所以平行四边形的面积=()×(),用字母表示S=()×()

(和()

3、选择题

求这个平行四边形的面积()

(a)

(b)

4、提高练习

(1)如图所示这个平行四边形的高是多少?

5、拓展练习

清溪镇碧月湾地产将以4万元。

(1)这块地值得买吗?

(2)如果“我”要购买,你有什么建议?

平行四边形的面积课件(篇9)

教学目标:

1、通过活动,推导出平行四边形的面积计算公式,并能够应用公式解决问题。

2、培养学生的观察分析、概括推导能力,发展学生的空间观念。

3、培养学生合作意识和探索精神,渗透转化的思想。

重点:

推导平行四边形面积公式,并应用公式解决问题。

难点:

推导平行四边形面积公式,能够正确选择条件求平行四边形的面积。

1.出示:(平行四边形)这是什么图形?关于平行四边形我们都学过哪些知识?(口答)

师:看来平行四边形的面积的大小和它的底和高有着密切的关系,它们到底有什么关系?今天我们就一起来研究平行四边形的面积(板题)

二、探究新知:

1.师:同学们,我们在学习数学知识时经常遇到新知识和新问题,大家都是怎样学习的`?(口答)板书:转化

2.师:那平行四边形能不能转化成以前学过的图形呢?请大家小组合作剪一剪、拼一拼,完成后,请填写小卷中的第一题的三个问题。

预设:3种情况,根据学生的汇报,演示不同的方法。

3.小结:

刚才我们运用了三种方法将平行四边形转化成了长方形,表面上看方法不同,其本质是怎样的?看来我们要透过现象看本质。

4.如果用字母S、a、h分别表示平行四边形的面积、底、高,面积公式应怎样表示?相机板书

5.要求平行四边形的面积,我们只要知道什么就可以了?

1)只要知道平行四边形的底和高的长度,就一定能求出它的面积。

2)平行四边形的面积与长方形的面积相等。

4)平行四边形的面积是30平方米,它的高应是6米,底是5米。

2)算出下面每个平行四边形的面积.

你是怎样想的?要求底呢?

请你判断一下,谁对谁错。

4)下面平行四边形的面积一样的大吗?为什么?

这个一样吗?有多少个这样的平行四边形?

五、拓展延伸:

观察这个平行四边形,看看它发生了什么变化?

你想到了什么?

六、师生小结:

今天你都学会了什么?怎样学会的?

板书设计:

平行四边形的面积课件(篇10)

设计说明

在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:

1.动手实践,多维探究。

数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。

2.分层运用新知,逐步理解内化。

新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。

课前准备

教师准备 PPT课件 学情检测卡 课堂活动卡 平行四边形卡片 剪刀

学生准备 练习卡片 平行四边形卡片 剪刀

教学过程

⊙创设情境,导入新课

1.常用的面积单位有哪些?

2.出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6 m,宽是4 m,怎样计算它的面积呢?

根据“长方形的面积=长×宽”,得出长方形花坛的面积是24 m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习平行四边形面积的计算。

(板书课题:平行四边形的面积)

设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。

⊙操作实践,探究新知

一、数方格法。

1.复习旧知。

师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。

(出示方格纸)

师:这是什么图形?(长方形)如果一个方格代表1 m2,那么这个长方形的面积是多少?(24 m2)

师:这是什么图形?(平行四边形)如果一个方格代表1 m2,自己在方格纸上数一数,这个平行四边形的面积是多少?

师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。

2.填写并观察表格。

设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。 3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。

二、割补法。

1.讨论:你们准备怎样将平行四边形转化成长方形呢?

预设 生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。

2.组织学生操作,教师巡视指导。

3.教师示范平行四边形转化成长方形的过程。

(1)先沿着平行四边形的高剪下左边的直角三角形。

(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。

4.观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)

(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?

(2)这个长方形的长与原来的平行四边形的底有什么关系?

(3)这个长方形的宽与原来的平行四边形的高有什么关系?

(4)思考后填空。

①原来的平行四边形的底与长方形的( )相等。

②原来的平行四边形的( )与长方形的( )相等。

③这两个图形的( )相等。

平行四边形的面积课件(篇11)

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。

1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2)使学生理解转化的思想,初步学会运用转化法来解决问题。

3)培养学生的合作意识和自主探究解决问题的能力。

让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。

通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。

教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

教学准备:

多媒体课件、平行四边形学具等。

师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?

师:请大家仔细观察,山西省近似我们学过的什么平面图形?

师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?

师:对,这节课我们就一起来研究“平行四边形的面积”。

1、回忆平行四边形的底和高。

师:同学们,平行四边形有哪些特征,你们还记得吗?

师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?

师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。

师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。

小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。

师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?

师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?

师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?

师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。

小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。

三、联系实际解决问题。

师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。

转载请保留原文链接://www.djz525.com/a/5976172.html,并在标注文章来源。
上一篇 : 元旦来了的句子(集锦54句)
下一篇 : 保安工作总结报告5篇