励志的句子范文大全(编辑 快乐魔法师)作为一位兢兢业业的人民教师,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?以下是小编精心整理的《圆与圆的位置关系》的公开课教案,仅供参考,希望能够帮助到大家。
圆与圆的位置关系课件 篇1
教学目标:
经历探索两个圆之间位置关系的过程;了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系
教学重点和难点
重点:圆与圆之间的几种位置关系
难点:两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系
教学过程设计
一、从学生原有的认知结构提出问题
1)复习点与圆的位置关系;2)复习直线与圆的位置关系。
二、师生共同研究形成概念
1.书本引例
☆ 想一想 P 125 平移两个圆
利用平移实验直观地探索圆和圆的位置关系。
2.圆与圆的位置关系
每一种位置关系都可以先让学生想想应该用什么名称表达。在讲解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系时,可先让学生探索,老师不要生硬地把答案说出来
☆ 巩固练习 若两圆没有交点,则这两个圆的位置关系是 相离 ;
若两圆有一个交点,则这两个圆的位置关系是 相切 ;
若两圆有两个交点,则这两个圆的位置关系是 相交 ;
☆ 想一想 书本P 126 想一想
通过实际例子让学生理解圆与圆的位置关系。
3.圆与圆相切的性质
☆ 想一想 书本P 127 想一想
旨在引导学生思考两圆相切的`性质:如果两圆相切,那么两圆的连心线经过切点,这一性质是下面议一议的基础。学生容易看出两圆相切图形的轴对称性及对称轴,但要说明切点在连心线上则有一定困难。
如果两圆相切,那么两圆的连心线经过切点
4.讲解例题
例1.已知⊙ 、⊙ 相交于点A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度数;2)⊙ 的半径 和⊙ 的半径 。
5.讲解例题
例2.两个同样大小的肥皂泡粘在一起,其剖面如图所示,分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小。
三、随堂练习
1.书本 P 128 随堂练习
2.《练习册》 P 59
四、小结
圆与圆的位置关系;圆心距与两圆半径和两圆的关系。
五、作业
书本 P 130 习题3.9 1
圆与圆的位置关系课件 篇2
教学目标。
1、通过回顾与整理以及练习与应用活动,让学生进一步巩固以学过的小数乘除法的计算方法,加深对小数点位置移动引起小数大小变化的规律的理解。
2、培养学生乐于学习,乐于与同伴合作并分享学习成果的良好学习品质。
教学重点。
与难点加深对小数乘除法计算方法,以及数学规律的认识。
教具多媒体课件。
根据学生学习情况随机板书。
教学过程。
师生双边活动。
改进意见。
一、回顾与整理。
这一单元,你了解了什么规律?学会了哪些计算?
学生小组交流,集体汇报。
二、练习与应用。
1、口算练习。
学生独立口算,集体订正。
2、第2题。
引导学生将后面六栏中的两个因数分别与第一栏进行比较,明确当一个因数不变时,另一个因数乘或除以几,那么积也随着乘或除以几,从而初步体会积的变化规律。
3、用竖式计算。
学生独立计算,师计时,并巡视指导,集体交流,指名说说计算方法。
4、第4题。
让学生根据题目的特点,判断哪几题的商小于1,再通过计算验证开始的判断是否正确。
5、第5题。
让学生说说每道题的改写方法,弄清是乘进率还是除以进率,再决定小数点是向右移动还是向左移动。
三、全课小结。
通过今天的整理与复习,你有哪些收获?你觉得在计。
教学过程。
师生双边活动。
改进意见。
算小数乘、除法时应注意些什么?
学生自由发表意见,全班交流。
四、作业。
完成《学习与探究》。
课后小记:
点与圆的位置关系教学反思
本节课的教学设计本着这样的一个目的,在动眼、动手、动脑中创设轻松、自主的课堂气氛,使学生掌握获得知识的方法,体验学习的快乐。
在整个课堂教学设计中,我做到了四个重视。第一,重视培养学生的创新意识和初步的探索教学内容的能力。具有探索性、开放性,能给学生创设自主探索的机会;第二,重视数学知识与实际应用的紧密联系,能引导学生联系自己的生活经验和已有的知识学习数学,并能把学到的数学知识应用到实践中去;第三,重视发挥学生的主体作用,指导学生从各种数学活动中学习数学,通过自己的动手、动脑实践,不断探索来获得知识并应用知识;第四,重视激发学生学习数学的兴趣,培养喜爱数学的情感,树立学好数学的信心,发扬敢想、敢说、敢争论的精神。
在实际教学过程中,为了让学生清楚感知圆和圆的五种位置关系,让学生分组摆一摆,再进行组间比一比。讨论后逐一归纳出五种位置关系及数学定义。并进行篮球赛标设计,使学生在紧张热烈竞争中巩固了知识。课堂中轻松的量一量,让学生在验证中直观地认识到两圆的半径、圆心距间的关系。在动眼、动手、动脑中再一次巩固了知识。
纵观整个课堂教学过程,动手与动脑的结合不仅让学生收获颇多,而且教者也回味无穷。使我更加感受到“四个重视”的重要性。但在本节课的教学中还存在着一定的不足。如:时间安排不够合理,前松后紧。虽也能按时完成教学任务,但总觉得有点姗姗开场却草草收尾的意味。在以后的教学中,我将继续努力,让我和学生在课堂中都能时刻享受到知识带来的快乐。
直线和圆的位置关系教学反思
并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时。
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。
新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”,让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的`参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关注学生思维的状态与学习互动的状态。
点和圆的位置关系教学设计
本节课的教学内容是点和圆的位置关系,看似内容少而简单,但让学生真正理解如何由图形关系得出数量关系,以及从数量关系联想到图形的位置关系,却并非简单。如果忽略了这一过程,学生会做题,却无法体验数学的本质,无法体验数形结合思想。所以本节课中引导学生由图形联想到数量关系,即有点和圆的位置关系联想到点到圆心的距离与半径的大小关系。我是分两步的得出的:
第一步让学生从图形上直观的认识点和圆的三种位置关系,第二步引导学生从数量上判断图形位置,是为了让学生更好的体验数形结合思想。数量关系的探索是这节课的一个重点内容,也是这节课的难点所在。为解决这个问题,在课前布置了学生进行预习,预习内容为以下6点:
2、经过一个点可以作几个圆?
3、经过两个点可以作几个圆?圆心有什么特点?
4、经过不在同一直线上的三点可以作几个圆?
5、过在同一直线上的三点能作圆吗?如果不能如何证明。
6、过在不在同一直线上的三点能作圆吗?如果能,能做几个,如果不能,请说明理由。
通过课堂上的提问反馈,可以感受到学生通过预习,在自主学习的基础上能更好的理解知识,从而进一步提高课堂听课的效率。
新课标指出,自主探究、动手实践、合作交流应成为学生的主要学习方式,教师应引导学生主动的从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。本节课中“不在同一直线上的三点可以确定一个圆”让学生经历了循序渐近的探究过程,即通过画图、观察、分析、发现经过一个已知点可以画无数个圆,经过两个已知点也可以画无数个圆,但其圆心分布在连接两点线段的垂直平分线上,经过不在同一直线上的三点可以确定一个圆。
通过这节课,学生们深切感受到预习在学习中的重要作用,也通过自己的预习对所学知识有理更深入的理解,从而提高了课堂效率;同时,通过对这节课的反复推敲设计,我也深切感受到对教材研究的重要性。
圆与圆的位置关系课件 篇3
一、三维目标
1、知识与技能
(1)理解圆与圆的位置的种类;
(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;
(3)会用连心线长判断两圆的位置关系、
2、过程与方法
设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:
(1)当时,圆与圆相离;
(2)当时,圆与圆外切;
(3)当时,圆与圆相交;
(4)当时,圆与圆内切;
(5)当时,圆与圆内含;
3、情态与价值观
让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想
二、教学重点、难点:
重点与难点:用坐标法判断圆与圆的位置关系、
三、教学设想
问题
设计意图
师生活动
1、初中学过的平面几何中,圆与圆的位置关系有几类?
结合学生已有知识以验,启发学生思考,激发学生学习兴趣、
教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流、
2、判断两圆的位置关系,你有什么好的方法吗?
引导学生明确两圆的位置关系,并发现判断和解决两圆的位置
教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法、
问题
设计意图
师生活动
关系的方法、
学生观察图形并思考,发表自己的解题方法、
3、例3
你能根据题目,在同一个直角坐标系中画出两个方程所表示的圆吗?你从中发现了什么?
培养学生“数形结合”的意识、
教师应该关注并发现有多少学生利用“图形”求,对这些学生应该给予表扬、同时强调,解析几何是一门数与形结合的学科、
4、根据你所画出的图形,可以直观判断两个圆的位置关系、如何把这些直观的事实转化为数学语言呢?
进一步培养学生解决问题、分析问题的能力、
利用判别式来探求两圆的位置关系、
师:启发学生利用图形的特征,用代数的方法来解决几何问题、
生:观察图形,并通过思考,指出两圆的交点,可以转化为两个圆的方程联立方程组后是否有实数根,进而利用判别式求解、
5、从上面你所画出的图形,你能发现解决两个圆的位置的其它方法吗?
进一步激发学生探求新知的精神,培养学生
师:指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置、
生:互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻求解题的途径、
6、如何判断两个圆的位置关系呢?
从具体到一般地总结判断两个圆的'位置关系的一般方法、
师:对于两个圆的方程,我们应当如何判断它们的位置关系呢?
引导学生讨论、交流,说出各自的想法,并进行分析、评价,补充完善判断两个圆的位置关系的方法、
7、阅读例3的两种解法,解决第137页的练习题、
巩固方法,并培养学生解决问题的能力、
师:指导学生完成练习题、
生:阅读教科书的例3,并完成第137页的练习题、
问题
设计意图
师生活动
8、若将两个圆的方程相减,你发现了什么?
得出两个圆的相交弦所在直线的方程、
师:引导并启发学生相交弦所在直线的方程的求法、
生:通过判断、分析,得出相交弦所在直线的方程、
9、两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?
进一步验证相交弦的方程、
师:引导学生验证结论、
生:互相讨论、交流,验证结论、
10、课堂小结:
教师提出下列问题让学生思考:
(1)通过两个圆的位置关系的判断,你学到了什么?
(2)判断两个圆的位置关系有几种方法?它们的特点是什么?
(3)如何利用两个圆的相交弦来判断它们的位置关系?
作业:习题4、2A组:4、7、
圆与圆的位置关系课件 篇4
一、引入课题
同学们,看看这是什么?(课件出示:北京奥运会金银铜牌图)
还记得在我国举行的北京奥运会上,我国的运动健儿们一共获得了多少枚这样的奖牌?(100枚)运动健儿们取得了辉煌的成绩,让我们每一个中国人都感到——自豪、骄傲!
这些奖牌什么形状的?说说你在日常生活中还见过哪些圆形的事物?(学生列举生活中的圆形)看来,圆在我们生活中的应用非常广泛!
老师带来了一些生活中有关圆的图片,想看看吗?(课件展示)从这些事物中,我们同样找到了圆,有的是利用了圆的美观,有的是利用了圆的特性。今天这节课就让我们一起走进圆的世界,去探索和发现它的奥秘!
出示课题:认识圆
二、动手操作,探究新知
1、圆和平面直线图形的区别
课前,老师请大家自己在家里画一个圆并剪下来,请大家拿出你做的圆!
请你像老师这样用手摸一摸圆形的边,观察一下圆形,说一说,和我们以前学过的三角形、长方形、正方形、平行四边形等平面图形有什么不同?(通过观察、比较圆和长方形、正方形等图形的区别,知道是平面上的一种曲线图形。)
下面让我们进一步来研究圆这种曲线图形吧!
2、认识圆的各部分名称。
(1)圆心
请大家把手上的这个圆对折一次(师出示大圆演示),打开,再换个方向对折,再打开,你发现了什么?这两条折痕相交吗?再换不同的方向对折一次,有几条折痕?这些折痕相交于圆中心的一点,这一点叫做圆心,一般用字母O表示。(师板书,课件演示)请同学们在你的圆上描出圆心,并用字母O表示。
(2)半径和直径(学生自学课本56页并用线段划出定义。)
除了圆心,你知道圆还有什么部分吗?(板书:半径直径)那什么叫半径?什么叫直径呢?下面请大打开书56页自学一下,并用红笔把概念划出来读一读。(学生自学完。)请同学来说说什么叫半径?(学生读出概念,然后课件演示)什么叫圆上任意一点?请你在自己的圆上画出一条半径,并用字母r表示。
谁来说说什么叫直径?(学生读出概念,然后课件演示)
请你在自己的圆上画出一条直径,并用字母d表示。
(3)巩固练习:找出图中的半径和直径。
(明确半径连接圆心和圆上任意一点;直径必须通过圆心、两端在圆上)
3、探究圆的特征。
(1)通过学习,我们认识了圆心、半径和直径,下面我们来个小比赛:要求在30秒钟内,准确的画出3半径和3条直径,比一比谁画得又快又好?
(师计时,生在圆纸上画半径和直径。)
画完以后,同桌交换检查画的半径和直径是否准确?
(2)同桌讨论:
在同一个圆内,你测量一下这些半径和直径的长度,有什么发现?
学生汇报:
(所有的半径都相等,所有的直径都相等。)板书:都相等
老师的这个大圆跟你们的圆半径相等吗?半径相等需要什么前提?(在同一个圆内)板书:在同一个圆还发现了什么?半径与直径的长度有什么关系?(直径是半径的2倍,半径是直径的一半。)你能用字
母表示一下它们之间的这种关系吗?
板书:d=2rr=d÷2
4、探索画圆的方法。
课前,请大家准备的这个圆,你是用什么方法画出来的?用了什么工具?
(学生说出不同方法)
怎样才能既准确又方便的画出一个圆呢?(用圆规来画圆。)借助实物来画圆受实物所限,画出的圆大小是固定的,不能随意变化,所以用圆规画圆应该是!。
(1)认识圆规并学习画圆
我们来观察一下圆规是怎样的?有几只脚?一只脚带着针尖,另一只脚带着笔尖。下面请同学们打开书57页,自学一下用圆规画圆的方法!
(学生自学完后)请同学们自己试一试用圆规在本子上画一个圆。
(学生用圆规画圆,老师巡视。)
谁愿意出来示范并说说画圆的步骤?(请一学生在实物投影上画圆并说步骤。)
大家想一想,两脚间的`距离实际是什么的长度?(半径)
我们用简洁的语言概括一下画圆的步骤:定圆心定半径旋转一周(课件出示)
(2)练习画圆
请大家按要求来画一个圆:用圆规画出半径是2厘米的一个圆,并用字母O、r、d分别标出它的圆心、半径、和直径。(展示学生画的圆,同桌互相评价。)
结合刚才画圆的过程,大家思考一下,画圆时圆心和半径各起了什么作用?
也就是:圆心决定圆的位置半径决定圆的大小(课件出示)
三、应用新知,解决问题:
1、判断题。(基础练习重点在于深入理解概念。)
(1)画圆时,圆规两脚间的距离是圆的直径。()
(2)两端都在圆上的线段是直径。()
(3)在同一个圆内,圆心到圆上任意一点的距离都相等。()
(4)直径是半径的2倍。()
(5)直径3厘米的圆比半径2厘米的圆要大些。()
2、课件出示:森林王国举行的赛车比赛
老师:同学们,森林王国正在举行赛车比赛,我们一起去看看!参加比赛的小动物分别是小牛、小兔和小狗,他们呀,正在整装待发。在比赛之前,老师想让你们猜一猜,谁的车子跑得最快?(小狗)
3、2、1、GO!同学们都猜对了!小狗的车轮是什么形状?(圆形)车轮做成圆形为什么就能跑得又快又稳?你能利用这节课学到的知识来解释一下吗?
(这是利用圆心到圆上任意一点的距离都相等的特性,车轴放在圆心的位置,车轮滚动时车轴保持平稳状态,使行进的车辆也保持平稳状态。)
四、谈收获,回顾知识点。
你这节课有什么收获?(让学生谈收获。)
五、作业布置。
1、书上完成58页第1、3题,60页第1、2题。
2、利用圆规和三角板,设计一幅有关于圆的图案。
板书设计:
在同一个圆内
半径无数条都相等
直径无数条都相等
d=2rr=d÷2