老师都需要为每堂课准备教案课件,撰写教案课件是每位老师都要做的事。只有写出好的教案才能充分展现出教学意图,最好教案课件是怎么样的呢?励志的句子小编已经为您挑选了以下有价值的资料供您参考:“平方根的课件”,请将此页添加到书签列表以便随时查看!此外,关于范文大全,您还可以浏览关于自尊的演讲稿(收藏11篇)。
平方根的课件 篇1
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪刀
教学过程:
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)
一、情境创设,揭示课题
1、创设故事情境
同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?
2、复习旧知,揭示课题
(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)
(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
二、自主探究,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
(两个图形的面积相等,都是18平方米……) (知识点)
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
(师出示一个平行四边形纸板,生看图猜测。)
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.
(师参与到小组活动中,巡视指导。)
3、汇报交流
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(电脑显示思考题)
小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:长方形面积=长×宽
平行四边形面积=底×高 (知识点)(能力点)
5、回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)
7、记忆公式
闭上眼睛记记公式。
如果要求平行四边形的面积,必需要知道哪些条件呢?
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?
(出示喜羊羊的草地图)(说明格式要求)学生独立完成。
三、深化运用,加深理解
通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”
1、算出下列平行四边形的面积 (考查点)
课件出示图形
(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)
2、选一选。(题目见课件) (考查点、能力点)
(强调:平行四边形的面积=底×底边对应的高)
你有什么结论?(等底等高的两个平行四边形面积相等。)
3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)
(考查点、能力点)
有一块地近似平行四边形,底是15米,高是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?
四、解决问题,应用拓展
1、小小设计师
羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?
2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?
五、总结全课,提高认识
这节课我们学习了什么知识?是怎么来学会这些知识的?
平方根的课件 篇2
学习目标:
1、在实际问题中,感受算术平方根存在的意义,理解算术平方根的概念,算术平方根具有双重非负性
2、会用计算器求一个数的算术平方根;利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的'规律;
学习重点:理解算术平方根的概念
学习难点:算术平方根具有双重非负性
学习过程:
一、学习准备
1、阅读课本第3页,由题意得出方程x= ,那么X= ,
这种地砖一块的边长为 m
2、正数a有2个平方根,其中正数a的正的平方根,也叫做a的算术平方根。
例如,4的平方根是 , 叫做4的算术平方根,记作 =2,
2的平方根是“ ”, 叫做2的算术平方根,
3、(1)16的算术平方根的平方根是什么? 5的算术平方根是什么?
(2)0的算术平方根是什么? 0的算术平方根有几个?
(3)2、-5、-6有算术平方根吗?为什么?
4、按课本第4页例题1格式求下列各数的算术平方根:
(1)625(2)0. 81;(3)6;(4) (5) (6)
二、合作探究:
1、阅读课本第5页利用计算器求算术平方根的方法,利用计算器求下列各式的值。
(1) (2) (3)
2、利用计算器求下列各数的算术平方根
a2000020020.020.0002
通过观察算术平方根,归纳被开方数与算术平方根之间小数点的变化规律
3、在 中, 表示一个 数, 表示一个 数,算术平方根具有
练习:若a-5+ =0,则 的平方根是
三、学习:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、判断下列说法是否正确:
①5是25的算术平方根;( )②-6是 的算术平方根; ( )
③ 0的算术平方根是0;( ) ④ 0.01是0.1的算术平方根; ( )
⑤一个正方形的边长就是这个正方形的面积的算术平方根. ( )
2、若 =2.291, =7.246,那么 =( )
A.22.91 B. 72.46 C.229.1 D.724.6
3、下列各式哪些有意义,哪些没有意义?
4、求下列各数的算术平方根
①121 ②2.25 ③ ④(-3)2
5、求下列各式的值 ① ② ③ ④
思维拓展:
1、一个数的算术平方根等于它本身,这个数是 。
2、若x=16,则5-x的算术平方根是 。
3、若4a+1的平方根是±5,则a的算术平方根是 。
4、 的平方根等于 ,算术平方根等于 。
5、若a-9+ =0,则 的平方根是
6、 的平方根等于 ,算术平方根是 。
7、 求xy算术平方根是。
数学小知识——怎样用笔算开平方
我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第 二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.如图2所示分别求85264, 12.5平方根的过程。自己举例试试!
平方根的课件 篇3
平方根美术教案:探索数学与艺术融合的奇妙魅力
引言:
数学和艺术,在看似迥然不同的领域中,却都蕴含着无限的美感和智慧。然而,将这两者相结合,你是否能够想象出一种全新的学习方式和视觉盛宴呢?本篇文章将为您详细介绍一种独特的教学方法——平方根美术教案,通过对数学概念中的平方根进行深入剖析,激发学生的创造力和想象力,让他们通过艺术表达和呈现复杂的数学概念,实现数学与艺术的完美结合。
一、平方根的概念与特点讲解(200字)
在平方根美术教案中的第一部分,我们将详细讲解平方根的概念和特点。学生们将了解到平方根的基本定义,即一个数的平方根是指与该数相乘后得到该数的数值。我们还将解释平方根的符号表示以及如何求解平方根。通过简洁明了的讲解,学生们将对平方根有更深入的认识与理解。
二、探索平方根的几何意义(300字)
在平方根美术教案的第二部分,我们将引导学生们通过几何视角去认识平方根的概念。通过绘制平方根的图形,并以实际物体为例子进行解释,学生们将更直观地理解平方根的意义。例如,利用纸片和绳子,学生们可以制作出不同边长的正方形,然后根据正方形的面积与边长之间的关系,引导学生们发现平方根的规律。
三、平方根的音乐表达(300字)
平方根美术教案的第三部分,我们将引导学生们尝试用音乐表达平方根的概念。通过将平方根的计算过程与音符进行对应,学生们可以演奏出和谐的平方根乐曲。例如,可以用钢琴的88个键来表示从1到100的平方根,通过不同音符的组合,学生们将能够感受到平方根的特殊规律。
四、用绘画展现数学之美(300字)
在平方根美术教案的第四部分,我们将鼓励学生们用绘画的方式来展现数学之美。他们可以根据平方根的计算公式,用不同的线条和色彩表现出平方根的特点。例如,他们可以用线段的长度和角度来表达正方形的边长与面积之间的关系,用色彩的明暗变化来表现平方根的大小和增长趋势。这样的创作过程,将不仅帮助学生们更好地理解平方根的概念,同时也培养了他们的审美能力和创造力。
五、纸艺创作与平方根(200字)
在平方根美术教案的最后一部分,我们将引导学生们用纸艺创作的方式来探索平方根。他们可以利用剪纸、折纸等形式,将平方根的概念转化为立体艺术作品。通过将平方根的计算公式与纸艺形式相结合,学生们将激发出对平方根的更深入理解,并能通过作品呈现出平方根的奇妙魅力。
结语:
平方根美术教案是一种创新的教学方法,将数学与艺术完美结合,为学生们打开一扇通向无限创造力的大门。通过在课堂上引入艺术元素,学生们将对平方根有更深入的认识,并能够通过绘画、音乐、纸艺等方式来表达和呈现数学的美。这种教学方法不仅丰富了学生们的学习经验,还培养了他们的创造力和想象力,让他们对数学充满了热爱和兴趣。相信通过平方根美术教案的引导,学生们能够在数学和艺术的交汇之处收获到更多的智慧和乐趣。
平方根的课件 篇4
这节课主要是让学生理解算术平方根的概念,知道一个正数的正的平方根叫这个数的算术平方根,零的算术平方根是零,负数没有算术平方根;因为小学学习过正方形的面积的概念,所以在学算术平方根的概念时学生比较容易理解,我是从书上的一个问题引入,让学生由问题的答案自己得出算术平方根的概念。通过书上的例子以及问题的答案,找出正数、零的算术平方根的特点,思考负数有没有算术平方根。学生通过自己的预习、比较、理解得出结论,印象比较深刻,也易于掌握。当然,老师的引导也很重要,引导学生类比、归纳,在知识的比较、迁移过程中领悟所学内容。在学习过程中,学生利用数学语言归纳知识点的能力、互助学习、合作学习的能力得到锻炼和提高,自主学习的意识得到深化。数学课堂教学应该联系生活,让生活数学进入课堂,使数学变得具体、生动、从而诱发学生学习数学的`兴趣,促使学生积极地参与数学知识的形成过程,培养学生勇于探索、敢于创新的精神。
本节课也存在一些问题,主要表现在以下几个方面:
1、在小组学习以后,可以多点强调小组之间的合作成果,让学生更多地体会小组学习的优势;
2、在课后小测中,发现有的学生在求“算术平方根”时,答案错写为“4”;还有的学生“”符号写不好,可能是有的学生对算术平方根的理解不到位,有的学生是学习态度不够好。应该再做些书写过程方面的训练;
3、在运用算术平方根解决实际问题时,个别学生有困难;
在今后的教学中,要更好地把握学生的主体地位,同时注意细节方面的问题,引导学生发挥自己的主观能动性,培养学生各方面的素质。
平方根的课件 篇5
一、教材分析
1、说教材
《算术平方根》是九年制义务教育人教版七年级下册第十章《实数》的第一节内容,与旧教材相比,它在这里先讲算术平方根再去学习平方根。为后学习平方根奠定一定基础,同时也把数从有理数拓展到无理数。这一节的教材编写思路是由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
2、教学目标和要求
根据新课标的要求及七年级学生的认知水平,我制定本节课的教学目标如下:
知识技能 : 了解算术平方根的概念,会求正数的算术平方根。
数学思考 : 通过探索 的大小,培养估算意识。
解决问题 : 通过拼正方形的活动,体验解决问题方法的多样性,展 形象思维。
情感态度 : 通过学习算术平方根,认识数学与生活的密切关系。通过探究活动,锻炼意志,建立自信心,提高学习热情。
3、教学的重点与难点
重点:算术平方根的概念,感受无理数。
难点:探究 大小的过程
二、说教学理念
培养学生的合作探究精神,自主学习、创新精神是新课程标准的重要理念。课堂教学中渗透了数学的转化思想,数型结合思想,体现新课程标准中的知识与能力、情感与态度,过程与方法的三统一。
三、说教法
本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是通过拼图法得出 。再通过渐进法得出 的大小。教师采用点拨的方法,启发学生主动思考,尝试用多种取值来得出 的大小,进而引出无理数。使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的创新能力,使课本知识成为学生自己的知识。
四、说学法
课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
五、说教学过程
(一) 创设情境、激发情趣
通过工厂要做一批面积为4平方米和2平方米的正方形模板,老板为了赶产品提出来加工资,由面积是2平方米的正方形模板的边长。巧妙的引入算术平方根。使学生能认识到学好本节的作用,又能激发他们的学习兴趣。
(二) 动手操作、初步感知
通过一个正数的平方,求出面积为1、4、9、16、25、4/25的正方形的边长,学生很轻松地就可以答出。进而巧妙的介绍算术平方根的概念,进入新知。
(三) 实践说明、深入新知
在进入算术平方根的概念之后,我们去试作加深对算术平方根的知识,学生在老师的引导之下的做一相关的例题。
(四) 巩固练习、
通过习题 巩固算术平方根的知识。
(五) 启发诱导、实际运用、拓展新知
让学生动手去完由两面积为1的小正方形去拼一面积为2的大正方形,并求出大正方形的边长。由所学知识大正方形的边长应为 。自然地过渡到探究 大小,让同学们先估计 的大小。教师从中他们估计不同的值通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,团结合作的创新精神。(在此探究过程中要用到渐近法)进而得出 是无理数。
(六) 反馈矫正、作业
通过课堂练习,强化学生对这节课的掌握,为此我设计了两道习题,第一道是开放题,这道题有助于帮助学生解决生活中的实际问题,可以激发学生学习数学的热情。第二道题采取了客观题的形式,难度中等,使学生掌握概念并能简单运用,可以提高学生的说理能力,可挑选中等成绩的学生起立回答。便于了解学生掌握的总体情况。
六、课堂小结
采用用先让学生归纳补充,然后教师再补充的方式进行:这节课我们学了什么知识?你有什么收获?充分发挥学生的主体意识,培养学生的语言概括能力。
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究,合作学习来主动发现,实现师生互动。通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好 的数学素养和学习习惯,让学生学会学习,学会生活才能使自己真正成为一名受学生欢迎的好老师。
平方根的课件 篇6
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值。
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0.
也就是,在等式 =a (x0)中,规定x = 。
2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。
3、 想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的。意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根。
4、例1 求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
平方根的课件 篇7
教学目标:
了解数的算术平方根及平方根的概念,并会用符号表示;理解平方与开方之间是互为逆运算的关系,会用计算器求一些正数的算术平方根。
教学重点:
了解数的算术平方根及平方根的概念,会求某些非负数的平方根,会用根号表示一个数的平方根。
教学难点:
对 大小的估算及如何理解 是非负数以及被开方数 是非负数;正确区分算术平方根与平方根。
第1课时
一、创设情景,导入新课
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?
这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)
二、合作交流,解读探究
讨论:1、什么样的运算是平方运算?
2、你还记得1~20之间整数的平方吗?
自主探索:让学生独立看书,自学教材
总结:一般地,如果一个正数 的平方为 ,即 ,那么正数 叫做 的算术平方根,记为 ,读作根号 ,其中 叫做被开方数。 另外:0的算术平方根是0
探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形
把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。
设大正方形的边长为 ,则 ; 由算术平方根的意义,
即大正方形的边长为 。 讨论: 有多大呢?
思考:你能举些象 这样的无限不循环小数吗?
三、应用迁移,巩固提高
例1 求下列各数的算术平方根
⑴100 ⑵ ⑶0.0001 ⑷0 ⑸
点拨:由一个数的算术平方根的定义出发来解决问题
思考:-4有算术平方根吗?
备选例题:要使代数式 有意义,则 的取值范围是( )
A. B. C. D.
四、总结反思,拓展升华
小结:1、算术平方根的定义和性质;
2、用计算器求一个正数的算术平方根
拓展:已知 的算术平方根是3, 的算术平方根是4, 是 的整数部分,求 的算术平方根
五、课堂跟踪反馈
1、 非负数 的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____
2、
3、 的算术平方根是_____, 的算术平方根____
4、 若 是49的算术平方根,则 =( )
A. 7 B. -7 C. 49 D.-49
5、 若 ,则 的算术平方根是( )
A. 49 B. 53 C.7 D 。
6、 若 ,求 的值。
7、 若 是 的整数部分, 是 的小数部分,试确定 、 的值。
8、 一个自然数的算术平方根为 ,那么与这个自然数相邻的下一个自然数的算术平方根是_______
平方根的课件 篇8
一、对《平方根》教学设计方案及教学效果的反思
这是一节概念课,前面学习了算术平方根,学生已经有了初步的认识。本节课是在算术平方根的基础上扩展到平方根,学生进行了自主学习、合作讨论、展示交流等过程,教师适当引导和总结。
1、教学设计在激发学生主体参与学习活动方面的优点
承接算术平方根的内容,把范围从“一个正数x的平方等于a”扩展到“一个数x的平方等于a”,学生通过练习和探究得知,当a为正数时,x的值有两个,而且它们互为相反数,从而感受到平方根与算术平方根的区别与联系。学生经历从探究中发现问题,从合作学习中理解知识,发挥了学生学习的主动性、积极性,体现了学生的主体作用。在教学的过程中,教师适当的引导,让学生明确探究的方向与方式,培养了学生的自主学习的能力、合作交流的`能力以及概括的能力。例题中的思路引导,让学生明白解题的思路和格式;通过练习,让学生发现自己掌握知识中还存在的问题,以便查漏补缺。
2、教学设计存在的缺点
教学设计过多的是从教者的角度出发,“导”的程度不够,还没有充分发挥学生的主体作用和积极性。究其原因,是教师还放不开,生怕学生学不懂、学不好,所以没有很好地训练学生学习的自主性。从教学的效果来看,基础差的学生是被动地接受,学完后仍然是一知半解,掌握较差。
二、教学设计优化的设想
我们学校实行学案导学的课改模式,要求“三案合一”,这就要求我们必须下功夫研究学案的编写,要精而实用。这节课上完过后,认真反思,针对存在的问题,我认为应该这样优化:
1、大胆改变传统教学方法,一定要放手让学生自主探究。当然,传统教学中一些有效的方法要融合进来。我们应该相信,学生自主探究出来的东西才是印象最深刻的,也让学生有一种成就感,从而更加热爱学习。
2、认真思考并做好“导”的工作。首先,编写学案时,要充分考虑学案的实用性,即:学案要真正起到“导学”的作用。学生在自主学习的过程中,学案要能帮助学生理清思路,指引学的方向。其次,课堂教学中,教师要成为“导”师,引导学生学会学习,引导学生自主有序地开展课堂学习活动。
3、面向全体,重视后进生的发展。在教学设计和课堂教学中,我们都要结合学生的实际情况,采取有效的措施,要照顾到全体学生的发展,不能只管学习好的学生。在作业设计中也要体现层次性,不能让后进生望而生畏。
三、教学设计作为衔接教材与课程桥梁的作用
教师应该深入研究教材,吃透教材要求,结合学生实际,重新组合教材内容,关注学生已有的知识结构和学习经验,让我们的教学设计真正适合学生的发展,能够激发学生学习数学的兴趣。在课堂教学中,我们要尽量发挥学生的主体性,让学生多动手、多思考、多讨论、多训练,使学生各方面的能力都得到有效的培养和提高。
平方根的课件 篇9
学习目标:
1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。
学习重点:
了解平方根的概念,求某些非负数的平方根
学习难点:
了解被开方数的非负性;
学习过程:
一、 学习准备
1、我们已经学习过哪些运算?它们中互为逆运算的是?
答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。
2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。
32 = ( ) ( )2 = 9
(—3)2= ( ) ( )2 =
( )2= ( ) ( )2 = 0
( )2 =( )
02 =( ) ( )2 = —4
3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:
叫做开平方,平方与 互为逆运算
4、观察上面两组算式,归纳一个数的平方根的性质是:
一个正数 有两个平方根,它们互为相反数;
零 有一个平方根,它是零本身;
负数 没有平方根。
交流:(1) 的平方根是什么?
(2)0.16的平方根是什么?
(3)0的平方根是什么?
(4)—9的平方根是什么?
5、平方根的表示方法
一个正数a有两个平方根,它们互为相反数。
正数a的`正的平方根,记作
正数a的负的平方根,记作
这两个平方根合在一起记作
如果X2=a,那么X= ,其中符号 读作根号,a叫做被开方数
这里的a表示什么样的数? a是非负数
二、合作探究
1、判断下面的说法是否正确:
1)—5是25的平方根; ( )
2)25的平方根是—5; ( )
3)0的平方根是0 ( )
4)1的平方根是1 ( )
5)(—3)2的平方根是—3 ( )
6) —32的平方根是—3 ( )
2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。
(1) 0.81 (2) (3) —100 (4) (—4)2
(5)1.69 (6) (7) 10 (8) 5
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、检验下面各题中前面的数是不是后面的数的平方根。
(1)12 , 144 ( ) (2)0.2 , 0.04 ( )
(3)102 ,104 ( ) (4)14 ,256 ( )
2、选择题(1) 0.01的平方根是 ( )
A、0.1 B、0.1 C、0.0001 D、0.0001
(2)因为(0.3)2 = 0.09 所以( )
A、0.09 是 0.3的平方根。 B、0.09是0.3的3倍。
C、0.3 是0.09 的平方根。 D、0.3不是0.09的平方根。
3、判断下列说法是否正确:
(1)—9的平方根是—3; ( )
(2)49的平方根是7 ; ( )
(3)(—2)2的平方根是 ( )
(4)—1 是 1的平方根; ( )
(5)若X2 = 16 则X = 4 ( )
(6)7的平方根是49。 ( )
4、求下列各数的平方根
1)81 2)0。25 3) 4)(—6)2
5、求下列各式中的x:
(1) x=16 (2) x= (3) x=15 (4) 4x=81
思维拓展:
1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是
2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是5,则a= 。
4、一个数x的平方根等于m+1和m—3,则m= 。x= 。
5、若|a—9|+(b—4)=0,则ab的平方根是 。
6、熟背1至20的平方的结果。
7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?
平方根的课件 篇10
平方根 教案
【知识与技能】
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.
2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.
【过程与方法】
通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.
【情感态度】
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.
【教学重点】
理解算术平方根的概念.
【教学难点】
根据算术平方根的概念正确求出非负数的算术平方根.
一、情境导入,初步认识
教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.
问题1 求出下列各数的平方.
1,0,(-1),-1/3,3,1/2.
问题2下列各数分别是某实数的平方,请求出某实数.
25,0,4,4/25,1/144,-1/4,1.69.
对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.
由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.
22=4,(-2) =4,故平方为4的数为2或-2.
问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?
分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.
《6.1.2平方根》课堂练习题
2.(绵阳中考)±2是4的(A)
A.平方根 B.相反数
C.绝对值 D.算术平方根
3.下面说法中不正确的是(D)
A.6是36的平方根 B.-6是36的平方根
C.36的平方根是±6 D.36的平方根是6
4.下列说法正确的是(D)
A.任何非负数都有两个平方根
B.一个正数的平方根仍然是正数
C.只有正数才有平方根
D.负数没有平方根
《6.1平方根》课时练习含答案
15. 下面说法正确的是( )
A.4是2的平方根
B.2是4的算术平方根
C.0的算术平方根不存在
D.-1的平方的算术平方根是-1
答案:B
知识点:平方根;算术平方根
解析:
解答:A、4不是2的平方根,故本选项错误;
B、2是4的算术平方根,故本选项正确;
C、0的算术平方根是0,故本选项错误;
D、-1的平方为1,1的算术平方根为1,故本选项错误.
故选B.
分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.
平方根的课件 篇11
聋校算术平方根教案
1
平方根(算术平方根)
实习生:方迎花 实习班级:八年级聋生 指导教师:宋老师
一、教材分析:本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。
通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围。本章内
容不仅是后面学习二次根式、一元二次方程以及解三角形边长等知识基础,
也为学习高第一文库网中数学中的不得式、函数及解析几何的大部分知识做好准备。本
章的重点是算术平方根和平方根的概念和求法,是理解立方根的概念和求
法,实数的意义和运算的直接基础;难点是平方根和实数的概念,学生对正
数开平方会有两个结果感到不习惯,容易将算术平方根和平方根混淆。实数
的概念是一个构造性的定义,比较抽象,对于概念的理解有一定的困难。
二、学情分析:学生在七年级已经接触了有理数,对数有了一定的认识,基本上掌握了有理
数的乘方,对平方根、立方根的求解提供了一定的基础。学生已经知道已知
正方形的边长求正方形的面积的方法,利用实际的数学问题引出算术平方根,
让学生结合已有的经验,算术平方根与平方根就易于理解。对于开方后得数
为有理数的,学生很容易掌握,但是对于开方后为无理数的对于学生而言相对较难,因此中在教学过程中通过探究方式引出2,让学生初步认识无理
数,同时进一步加深对数的认识,扩大数的范围。本班学生共19人,正常学
生1人部分为重听学生,学生的认知水平和数学能力个体差异比较大
在教学过程中要注意个别辅导。
三、教学目标:
知识技能:1.了解算术平方根的概念。
2. 会求一个数的算术平方根,并会用符号表示。
过程与方法:通过实际问题的解决和探究过程,让学生理解一个数的平方和开平方之
间的联系,体会问题的多样性和了解从两个方向入手思考问题。
感情态度:认识数学与人类生活的。密切联系,提高学生的数感和符号感,发展抽象思
维,锻炼学生主动思考的能力,克服困难的意志,建立自信心,提高学习
热情。
四、教学重难点
教学重点:算术平方根的概念,初步感受无理数。
教学难点:算术平方根的求法。
五、教学准备:多媒体课件
六、教学方法:情境创设法及操作练习法为主,讲授法为辅。
七、授课时间:10月19日 星期三 上午第四节课 第1课时
课型:汇报课
八、教学过程
(一)导入:(复习导入,知识回顾)
T:1、我们以前学过的有理数有哪些?
S:正数、负数……
T:2、填空。第一题,4的平方等于谁乘于谁,等于几……
S:……
(二)情景创设,引入算术平方根
身边的小事:学校要举行美术作品比赛,小鸥很高兴,他想裁出一块面积为25dm 的正
方形画布,画上自己的得意之作参比赛,这块正方形画布的边长应取多少?
T:你们能不能帮助小欧求出边长,怎么求?
S:5dm
T:怎么求的?S:……
T:我们现在知道的是正方形的面积为25平方分米,要求边长。正方形的面积=边长×边长,所以可以求得边长为5dm。
T:那么如果正方形的面积是1,4,15,36 ……边长分别是多少呢?
S:1,2,4 ……
T:像这种数学问题,我们可以把它看做已知一个正数的平方,求这个正数的问题。 概念引入
T:像5的平方等于25,那么5叫做25的算术平方根,10的平方等于100……,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。(进一步强调概念,学生齐读)
练习:说出下列各数的算术平方根:
(1)9 (2)4 (3)3
先点学生回答,再纠错
(1)因为3的平方等于9,所以9的算术平方根是3
(2)因为2的平方等于4,所以4的算术平方根是2
(出示ppt)
T:那么3的算术平方根是多少呢?怎么求?
S:……
T:我们先来看一下,如果像3一样的数,没法从以前我们学过的有理数中找到算术平方根,那我们应该怎么表示呢?
T:(出示ppt)
a 的算术平方根记为a,读作:根号a,x=a,a叫做被开方数
规定:0的算术平方根为0,即0=0
T:那么3的算术平方根我们可以表示为多少?
S:3,T:9的算术平方根呢……
T:我们再来回顾下算术平方根的定义。
S:(学生齐读)在一次强调正数,算术平方根为正数,0的算术平方根为0。
(三)巩固练习:试一试
1、求下列各数的算术平方根
(1)100 (2)1 (3)0 (4)
先让学生先思考,教师再核对。
2(1)解:∵10=100,,100的算术平方根为=10…… 49 64
(出示ppt,第五题,第六题)
(5)3的算术平方根等于多少?说说你是怎样求的?
S:3的算术平方根是3(据学生的回答情况讲解) 22
(6)4的算术平方根为几?
S:不知道。没有……
T:(再次回到算术平方根的定义),因为没有一个数的平方可能是负数,所以4没有算术平方根。 对于a:a≥0 非负双重性
a
T:这就是算术平方根的性质,被开方数必须大于或等于0,a也就是算术平方根也
必须大于或等于0,即a和a都不能为负数,叫做非负双重性。所以负数没有算数平方根。
2、知道下列式子意思吗?能求出他们的值吗?
(1)25 (2)12 (3)0.81 (4)0 (5) 4
2 先让学生自己思考,再分别请学生回答,对5进一步讲解。
(四)总结布置作业。
1、说说这节课你学到了什么知识?
2、算术平方根的定义和性质
3、怎样求一个正数的算术平方根?
(这节课我们主要学习了算术平方根的定义及算术平方根的性质:非负双重性。也就是说被开方数和算术平方根都不能为负数。下节课我们一起来感受2的大小。) 作业:
(1)课本p75习题13.1第1,2题
(2)你能用边长为4的正方形剪拼成面积为2的正方形吗?
九、板书设计
13.1.1 算术平方根
1、算术平方根: x2=a, x叫做a的算术平方根,记为a,a叫做被开方数
=0
2、算术平方根的性质:a≥0
非负双重性
a
3、总结、作业(p75习题13.1第1,2题)
平方根的课件 篇12
一、 教学目标:
1.运动多种识字方法,会认“雾、霜、朝、霞、夕、蝶、蜂、碧、紫、千、李、杨、秀”13个生字。会写“秀、和”2个字,区分“秀、和”偏旁的写法。
2.正确、流利地读好对子歌,激发学生对对子和收集对子的兴趣。
3.体会大自然的美妙,享受大自然的神奇,产生对大自然的热爱之情。
1.同学们,上课之前咱们来说一个游戏怎么样?
我说长,我对短, 我说胖,我对瘦, 我说粗,我对细,
我说天,我对地, 我说天上,我对地下。
2.师:同学们玩得高兴吗,我们玩得游戏叫对对子,这可是我们祖国的传统 文化,今天,我们就来学习一首描写自然景观的对子歌。
请同学们伸出右手的食指和老师一起写课题,齐读课题。
同学们,大自然有着美丽的景色,你想不想读?在读之前老师有个问题想问大家,在读的过程中遇到不认识的字怎么办?(借助拼音,问同学或者老师)
下面,就请同学们端起课本,放开声音自己试着读读课文,注意要读准字音奥!(预设:齐读,说:“同学们读得很整齐,能自己读吗?”)
下面我们来接读课文,课文有3个小节,我呢就请3个小朋友来读,其它小朋友认真听,大家都是小评委。
3.学生评价。
4.生字变红,齐读。
这三个同学读得很流利(声音很响亮),其他同学读得怎么样呢?放下课本,请看大屏幕,我们一起来读一读。(评价:同学们的声音真响亮)
读完后你发现了什么?这些红色的字就是我们这节课的生字。
生字宝宝很想和大家成为朋友,他们忍不住跳出来和大家打招呼了,大家还认识它们吗?
谁能像老师这样当小老师,领着大家读。
四、随文识记生字。
过渡:大家知道吗?生字宝宝可热情了,他们邀请我们到美丽的大自然去欣赏一番呢。
2.出示第一句。同学们都见过云和雪,那你见过雾吗?雾一般都是早晨出现的,所以我们又叫晨雾,板书晨雾。同法教学秋霜。
3、出示图片,你知道这个图片中隐藏的对子吗?出示和风对细雨,朝霞对夕阳。
1.我们都有一双善于发现的眼睛,我们来看下一句。出示花对草,蝶对蜂。分男女读,边看图片边认识蝶、蜂。
2.出示第二句。依据图片认识蓝天、碧野,积累万紫千红一词。
(三)学习第三小结,识记生字。
1、出示第三小节第一句,认识四种树木。
3、出示第二句,学生读一读。
4、读得真好听,老师来考考大家,像这幅图画我们可以用哪个四字词语来形容呢?是(蓝天碧野)。
①看图想一想,碧是什么意思?
小结:碧是绿色,在这指碧绿的田野。看!借助图画,还可以理解字的意思呢!
②生活中你还见过碧绿的什么?
4.蓝天碧野,有蓝色、绿色,你知道大自然中还有哪些漂亮的颜色吗?
小结:这么多的色彩在一起,太漂亮了,这就是(万紫千红)。
5.这美丽的风景我们又可以用哪个词语形容呢?真聪明,齐读山清水秀,秀就是好看的意思。
6.我们德兴是一个山清水秀的好地方,有……(三清山、大茅山、凤凰湖等)
三、巩固识字。
过渡:同学们课文读得不错,我们一起来做个小游戏吧!
2.认读生字。
看那!生字宝宝又来看大家了,我们开小火车读一读,好吗?
3、生字归类。出示课件学习。
3、认读词语:黑板上的词语大家一起再读一读,分男女生读。 朝阳 、晚霞、晨雾、秋霜、
火车开得快起来了,小朋友还能读准吗?
小结:大家真棒,生字朋友感谢大家,我们把掌声送给自己吧!
四、指导观察,学写生字。
过渡:同学们,识字可以丰富我们的知识,开阔我们的视野,同样,把字写好也能给人带来美好的享受!
1.读贴。
①出示“和”“秀”,指导观察:秀是上下结构,和是左右结构,它们都有一个“禾苗”的“禾”字,看这个禾字在这两个字中有什么不同?(形状上有什么变化呢?)
明确一个在上,一个在左,一个扁,一个瘦,和的一捺变成点。
“秀”是上下节构,禾在上半格应该写得扁一些;上撇是平撇,不能写成斜撇;竖要写短,给下面的“乃”留下空隙;一撇一捺要尽量伸展。
③写字的时候,坐姿是非常重要的,请大家坐端正,写一个“秀”字。
④观察自己的字和例字,看看有什么不足?再写第二个秀字,改进第一个字的不足。
3.范写“和”
①“和”是左右结构,当禾做偏旁的时候,不仅会变窄,还会将捺变成一点,这就是汉字中的避让,这样写出来的字才更紧凑、漂亮。
②边说口诀边范写:禾字做旁真谦让,身体变瘦腾地方,一捺变点懂礼让。
[《识字3》教学设计 (人教版一年级下册)]
平方根的课件 篇13
一、教材分析:
1、教材的地位和作用
本节课题是新人教版义务教育课程教科书七年级·下册·第六章·第二节“平方根”第二课时的内容。是在七年级学习了乘方运算的基础上安排的,是学习实数的准备知识。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是有助于了解n次方根的概念,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。
2、教学目标
⑴、知识与技能
帮助学生了解平方根的概念,会进行有关平方根的运算;理解算术平方根与平方根的联系和区别。
⑵、教学思考
在具体问题中抽象出平方根的概念,培养学生的抽象概括能力。
⑶、解决问题
通过举例使学生明确平方根是靠它的逆运算平方来进行,发展学生学习数学的能力。
⑷、情感态度与价值观
通过主动参与使学生勇于面对困难并能够解决困难,发展合作交流意识。
3、教学重点、难点与关键:
重点:平方根的概念和性质难点:平方根的概念和表示的理解。
关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。
二、学情分析
根据教学中学生身心发展特点,我从学生现有知识基础、学习现状等方面分析。
1、学生的现有基础
在“平方根”的学习中,学生在七年级时已学过了乘方的运算,上节课又学习了算术平方根的运算,初步理解了根号的表示,有助于本节的学习活动进行。
2、学习的现状
此阶段的学生具有很强的好奇心、强烈的“自我”和自我发展的.意识,因此对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。
三、说教法与学法
教法:
(1)情境教学法:目的就是使学生尽快“走进课堂”,激发学生的兴趣,引发学生思考.
(2)对比教学法:即把新旧知识,把二次方与平方根的概念,计算过程等对比起来进行教学.即使他们掌握了概念的本质,又完善了学生的知识结构,从而降低了学生的学习难度.
(3)经验交流法:即使学生在独立练习、思考的基础上,学会与人交流,与人合作,经验共享.
学法:学生是学习的主人,我们应该把过程还给学生,让过程与结果并重。新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习.据此学生的学法我定为小组交流合作法和自主学习法.这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台.
四、教学程序:
(一)创设情境,激发兴趣
首先,我动画的形式,用多媒体示出问题情境:
(1)()2=9,()2=9;()2=0.64,()2=0.64.
(2)如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的;
(3)如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的。
总结得出平方根的概念:如果一个数的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫二次方根)。这样的设计,其目的是通过填空,与算术平方根比较引出平方根的概念,沟通二者之间的关系,与乘方相结合,培养学生的逆向思维能力。
(二)合作交流,理解概念
1、填空:
(1)32=(),(-3)2=(),22=(),(-2)2=(),02=()
(2)()2=&
nbsp;9,()2=4,()2=0(3)有没有一个数的平方等于负数的?
2、想一想
(1)正数的平方根有()个,它们互为();(2)0有()个平方根,它是();
(3)负数______平方根(填“有”或“没有”)
(三)综合训练,突出重点
1、出示例3求下例各数的平方根:
(1)64;(2);(3)0.0004;(4)(-25)2;(5)11
2、为了加深对平方根的理解,我出示课本P42页“想一想”:
(1)()2=();()2=();()2=()(2)对于正数a,()2=()
(四)课后小结
(五)作业P47第3和第4题
五、板书设计平方根
平方根概念:……例3:---------------
开平方概念:……解:(板演详细解题过程)……
法则:……
六、设计说明:
(一)、指导思想:
依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。
(二)、关于教法和学法
采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。(三)、关于教学程序的设计
在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:
①注重目标控制,面向全体学生,启发式与探究式教学。
②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。
③注重师生间、同学间的互动协作,共同提高。
④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。
平方根的课件 篇14
1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2. 已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
平方根的课件 篇15
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是"直线 , 被直线 所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F" 字型,"同旁同侧"
"三线八角" 内错角:"Z" 字型,"之间两侧"
同旁内角:"U" 字型,"之间同侧"
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.