【#范文大全# #高等数学课件系列#】按照平时学习工作的要求,我们时不时会需要用到一些文章,范文能够运用到我们生活的方方面面,你是否需要一些实用的范文呢?小编现在向你推荐高等数学课件系列,仅供参考,我们来看看吧!
高等数学课件【篇1】
高等数学课件是大学数学课程中的重要教学资源,它不仅丰富了教学内容,也提供了有效的学习支持。本文将围绕高等数学课件这一主题,从以下三个方面阐述其重要性和优点。
一、提高教学效率
高等数学课件充分运用了现代电子技术,使得数学教学资源更加丰富多样化。与传统的黑板板书相比,高等数学课件具有内容丰富、动画效果清晰、易于呈现等诸多优点。通过图像、动画和音频等多媒体手段,高等数学课件可以帮助学生更好地了解各种数学概念和定理,形象直观地表现出数学公式和计算过程,使得学生不仅能够迅速理解掌握知识点,而且还能够巩固知识。
二、提高学生学习兴趣
随着教学方式的不断发展,学生已经对传统的教学模式产生了厌倦情绪。而高等数学课件则是一种符合现代大学生学习需求的教学模式。高等数学课件引入了图像、动画和音频等多媒体手段,不仅能够增强学习的乐趣,而且还可以使得学习更具创新性和实践性,从而增强学生的学习兴趣和积极性。
三、提高教学质量
高等数学课件不仅丰富了教学内容,同时也提供了更加完善的教学支持。举例来说,高等数学课件不仅包含了大量优秀的图像、动画和音频,还可以结合计算机辅助教学工具,进行知识点测试和题目练习等教学环节,进而提高学生的学习效率和学习能力。此外,高等数学课件还可以通过配置计算机辅助教学工具,实现自适应学习和个性化学习定制,使得学生能够体验更为个性化、高效和优质的学习模式。
总之,高等数学课件在现代大学数学教学中发挥着至关重要的作用,不仅充分利用了现代电子技术和多媒体手段,提升了教学效率和质量,同时也增强了学生学习兴趣和积极性,“高等数学课件”的出现将使得大学数学教学更加现代、多样化和实践性。
高等数学课件【篇2】
高等数学:数列的极限课件
课件的调整改变:
教学过程是利用反馈信息去进行控制的,不论何种教学方法和手段都需要教师不断接收学生的反馈信息,才能对教学过程进行适时调整。精品课件的引入,为教师能及时获取大量的反馈信息提供了可能,这就要求我们教师在教学过程中一定要注意对学生反馈信息的收集、分析和加工,根据学生的实际反应,适时发出控制信息,对教学过程及时进行合理调整和改变。
教师用课件多用于课堂教学中的教学演示、实验等,面向的是全体学生,有教师在场讲解或引导,这时如果屏幕上的文字显示太多,学生会分散注意力去阅读文字显示和提示,还会打乱教师的讲解。为了突出重点,并使画面简洁,教师用的程序显示中应尽量不出现或少出现教师可以用语言来完成的内容和流向提示。在设计时,只要稍做加工,即可把同一课件用于不同场合。
课件中的声音包括音乐、语音(如解说)、各种效果声和背景声等。其中解说常用于说明事物和现象,并进行概括和总结,对学习者给予指导、引导或启发,补充图像或文本的不足等;音乐则用于烘托特定的内容情节,对学习的节奏和氛围给予一定程度的调节,但要根据教学进行恰当的选择,否则会产生负效果;背景声和效果声主要用于丰富教学内容所涉及的事物和现象,增强内容的`表现力,在教学过程中既让学习者观其形,又闻其声。
我们所处的是一个充满创新精神的时代,也是一个创新精神永远都不多余的时代,做创新型教师是时代给我们提出的要求。一个有创新精神的课件制作者永远都不乏充满创意的课件作品。相反,不具有创新精神的教师,制作出来的课件可能永远都是一种陈旧的模式,总能让人一眼就看出这样或那样的缺憾,没有让人眼前为之一亮的感觉。就像一套拳脚年复一年地天天打,连自己都有可能会腻了,更不提一群求知欲强、见多识广、有主见、生动活泼的学生这样一个鲜活的群体了。
对于新教师,采用课件制作之前,最好应有传统教学方式的训练,通过一到二遍的传统教学方式讲授,真正理解“讲课”与“念书本”的区别,学会一定的讲课技巧。只有当教师真正熟悉了教材内容,吃透了其中的难点、重点,才能充分发挥多媒体教学的优势,提高课堂教学质量。
高等数学课件【篇3】
高等数学课程是大学数学课程的一种,通常包括微积分、线性代数等内容。它为学生提供了更深入的数学知识,为他们在数学领域的研究和专业发展打下了坚实的基础。以下是关于高等数学的主题范文。
一、微积分是高等数学的重要组成部分,其应用范围非常广泛。通过学习微积分,学生可以更深入地理解数学对于自然科学和工程科学的重要性,以及数学在经济学和金融学等领域的应用。此外,微积分也是理解人类历史上最伟大的数学要素之一,如牛顿与莱布尼茨的发现和应用。随着时代的变化和数学的发展,现代微积分也经历了很多新的变化和应用,如微分方程和复变函数。
二、线性代数是另一个重要的高等数学领域,它将数学的概念与实际的科学和工程应用结合起来。学生学习线性代数的过程中,他们将会掌握矩阵的基本概念,矩阵方程,向量空间,线性变换,欧几里得空间等重要概念。线性代数也是现代计算机科学领域中应用广泛的领域,因为它对于处理大量复杂和抽象的数据有着重要的方法和工具。
三、高等数学的Calculus(微积分)和Linear Algebra(线性代数)是现代科学和工程的基础。这些数学思想和方法的理解和掌握将使得学生们在科学领域中更加成功。学生不仅要掌握计算技能,更重要的是理解概念和理论的物理和几何意义。在应用和计算方面,学生还需要熟练掌握数学软件和工具,如MATLAB, Maple等。
四、高等数学教育是大学教育中最重要的组成部分之一,它不仅为自然科学和工程学科的发展做出了重要贡献,而且也为其他领域的理论和应用提供了强有力的工具。高等数学不仅为理解和探究自然界和人类文化提供了基础,而且还为学生的个人发展和成就提供了坚实的数学知识基础。因此,高等数学教育的重要性在当今社会中变得越来越明显,我们应该重视数学教育,并为学生提供更好的数学教育资源和机会。
五、高等数学教育应强调学生们对数学知识的理解和应用能力的培养。要实现这一目的,教育者应该采用更多的探究式学习方法和应用例子来让学生发现数学概念的重要性。同时,教育者应该鼓励学生们利用数学知识,为社会做出更大的贡献。
总而言之,高等数学教育是大学教育的重要组成部分。学生通过学习微积分和线性代数等数学知识,将会掌握更深入的数学理解和应用,从而对自然科学和工程学科的发展做出更大的贡献。教育者应该注重学生对数学知识的理解和应用能力的培养,同时鼓励学生利用数学知识为社会创造更大的价值。
高等数学课件【篇4】
高等数学课件
高等数学课程对于大多数理工科学生来说,是必修课程中的一门重要课程。这门课程的学习内容极其丰富,包括了微积分、线性代数、常微分方程等方面的知识。为了帮助学生更好地学习高等数学课程,课件是一个非常有效的学习工具。
一、高等数学课程概述
高等数学课程是大多数理科学生必修的一门学科,主要包括微积分、线性代数、概率与统计、数学分析等内容,是研究各种现代科学问题所必需的一种重要工具。高等数学的学习对于提高学生的数学素养、加强数学思维能力、提高科学研究能力、提高综合素质都具有重要的作用。
二、高等数学课件设计
针对高等数学课程的课件设计,应该根据课程大纲进行设计,使其能够帮助学生更好地掌握重点难点知识,同时使学生能够通过课件进行自主学习。以下是高等数学课件设计的几个方面:
1.内容分析:对于高等数学课程的内容进行分析,并提取重点难点知识点,为学生学习提供有针对性的指导。
2.教学方法:针对不同的知识点,采用不同的教学方法,如实例分析、问题导向、知识链接等。
3.学习工具:为学生提供学习工具,如习题集、在线视频、强化训练等,使学生能够更好地进行练习、巩固知识点。
4.互动方式:采用互动方式,使学生与教师之间、学生与学生之间能够进行有效沟通,交流经验,灵活开展学习。
三、高等数学课件的优点
高等数学课件的优点主要表现在以下几个方面:
1. 图像直观:高等数学中的许多数学模型,通过课件能够通过图表等形式进行展现,使学生能够直观地理解相关内容,加深对概念的理解。
2. 动态演示:高等数学涉及到的许多计算过程和公式,通过课件进行动态演示,使学生能够更加深入理解相关内容。
3. 学习效率高:通过课件,学生能够自主选择学习时间和地点,以及自主选择学习内容,灵活性较大,学习效率能够得到极大提高。
4. 综合性强:高等数学课件能够将不同章节的内容连接在一起,形成一个完整的知识体系,使学生能够更好地进行全面学习。
高等数学课件的设计和应用对于学生的自主学习、知识掌握和综合能力的提升都具有重要意义。针对高等数学课程的特点和学生的需求,需要有相应的课件设计方案,能够满足学生的学习需要,提高学生的学习效率和课程质量。
高等数学课件【篇5】
-----[xn1 , xn],AA1A2An,xixixi1(i1 , 2 , , n).②在每个小区间[xi1 , xi]上任取一点i,Aif(i)xi,Af(i)xi.i1n③max{x1 , x2 , , xn}.Alimf(i)xi.0i
1-----高等数学教案-----
n2.变速直线运动的路程: 设速度vv(t)是时间间隔[T1 , T2]上t的连续函数,路程记为s.①把区间[T1 , T2]分成n个小区间:,…,[t0 , t1] [tn1 , tn],[t1 , t2],ss1s2sn,tititi1(i1 , 2 , , n).②在每个小区间[ti1 , ti]上任取一点i,siv(i)ti,-----高等数学教案-----sv(i)ti.i1n③max{t1 , t2 , , tn}.slimv(i)ti.0i1n3.定积分定义: 设yf(x)在[a , b]上有界.①把区间[a , b]分成n个小区间:,[x1 , x2],…,[x0 , x1]
[xn1 , xn],-----高等数学教案-----xixixi1(i1 , 2 , , n).②在每个小区间[xi1 , xi]上任取一点i,f(i)xi.i1n③max{x1 , x2 , , xn}.如果
limf(i)xi
0i1n存在,且此极限不依赖于对区间[a , b]的分法和在[xi1 , xi]上
-----高等数学教案-----
则称此极限为f(x)i点的取法,在[a , b]上的定积分,记为
f(i)xi.af(x)dxlim0bi1n注意:定积分 af(x)dx只与被积函数f(x)﹑积分区间[a , b]有关,而与积分变量用什么字母表示无关,即
b af(x)dx af(t)dt af(u)du b b b.4.(必要条件).如果f(x , y)在D上可积,则f(x , y)在D上
-----高等数学教案-----有界.5.(充分条件): ①如果f(x)在[a , b]上连续,则f(x)在[a , b]上可积.②如果f(x)在[a , b]上有界,且只有有限个间断点,则f(x)在[a , b]上可积.6.定积分的几何意义:
①如果f(x)在[a , b]上连续,且f(x)0,则
b af(x)dxs
(S是曲边梯
-----高等数学教案-----形的面积).②.如果f(x)在[a , b]上连续,且f(x)0,则 b af(x)dxs
(S是曲边梯形的面积).③如果f(x)在[a , b]上连续,且f(x)的值有正有负,则 b af(x)dx等于x轴上方的曲边梯形面积减去x轴下方的曲边梯形面积.7.规定:
-----高等数学教案-----
①当ab时, af(x)dx0.ab
②当时,ba af(x)dxbf(x)dx.7.定积分的性质:
①f(x)g(x)dxf(x)dxg(x)dx.b b② akf(x)dxk af(x)dx.③ b c b af(x)dx af(x)dx cf(x)dx.④如果在[a , b]上f(x)1,则
b b a1dx adxba.b b b b a a a
-----高等数学教案-----⑤如果在[a , b]上f(x)0,则
b af(x)dx0.如果在[a , b]上f(x)g(x),则
b b af(x)dx ag(x)dx, af(x)dx af(x)dx.b b⑥设mf(x)M,则
bm(ba) af(x)dxM(b.⑦(积分中值定理)如果f(x)
-----高等数学教案-----在[a , b]上连续,则在[a , b]上至少存在一点,使得
b af(x)dxf()(ba).证:由于f(x)在[a , b]上连续,所以存在最大值M和最小值m,使得
mf(x)M,bm(ba) af(x)dxM(ba),f(x)dx amM,ba
-----高等数学教案-----
b故在[a , b]上至少存在一点,使得
b af(x)dxf()ba即
b af(x)dxf()(ba).b1称为在f(x)dxf(x) aba[a , b]上的平均值.P23511.证: 对任意实数,有 12 0[f(x)]dx0,1 1222 0f(x)dx 0f(x)dx0
-----高等数学教案-----,所以
124 0f(x)dx4 0f(x)dx0,即
0f(x)dx 0f(x)dx.练习1.设f(x)在[a , b]上连续,且f(x)0,证明: 12 121 af(x)dx af(x)dx(ba)b b.§5.2微积分基本公式
1.积分上限的函数(变上限
-----高等数学教案-----积分): f(x)在[a , b]上连续,称
x(x) af(t)dt x[a , b] 为积分上限的函数.2.如果f(x)在[a , b]上连续,x则(x) af(t)dt可导,且
xd(x)f(t)dtf(x) adx.x例1.求F(x) 0tsintdt的导数.解: F(x)xsinx.-----高等数学教案-----
sintdtsinx 0例2.lim lim2x0x02xx1.2 x例3.tedtlim xxxe2x x2 0t2elimx2tedtx x2 0t2xlimx(12
xlimx1
2-----高等数学教案-----
3. (x)f(t)dt
f[(x)](x)f[(x)](x)(x)1.2.xbd
例4. xaf(t)dt dxf[(xb)]f[(xa)].例
15.( xedt)ee2x xx12xe.lnx2tlnxx22
-----高等数学教案-----例6.设f(x)在[a , b]上连续,且单调增加,证明:
x1 F(x)f(t)dt axa在(a , b]内单调增加.证: 当x(a , b)时,f(x)(xa) af(t)dtF(x) 2(xa)f(x)(xa)f()(xa)2(xa)x
f(x)f()(xa)
-----高等数学教案-----
(ax).由于f(x)在[a , b]上单调增加,而ax,所以
f(x)f()F(x)0,(xa)故F(x)在(a , b]内单调增加.4.微积分基本公式(牛顿—莱布尼茨公式): 如果f(x)在[a , b]上连续,且F(x)是f(x)的一个原函数,则
b af(x)dxF(b)F(a)F(.-----高等数学教案-----
为F(x)、x(x) af(t)dt都是f(x)的原函数,所以(x)F(x)C.由于
(a)F(a)C,a(a) af(t)dt0,得
CF(a),(x)F(x)F(a),(b)F(b)F(a),b即
(b) af(x)dx
F(b)F(a)
F(x).ba
-----高等数学教案-----证: 因
1
1例7. 2dxlnx2
xln1ln2 ln2.1
例 2 1 28. 01xdx 0(1x)dx 1(x1)dx
221xx(x)0(x)22
1.例9.设
x , x[0 , 1), f(x)x , x[1 , 2] ,-----高等数学教案-----2求(x) 0f(t)dt在[0 , 2]上的表达式.x解(x) x2 0tdt , x[0 , 1) 12dt x 0t 1tdt , x[1 ,x3 , 31312(x21), x3 , 31-----高等数学教案 6 ,-----
:
2] x[0 ,x[1 , 2x[0 , x[1 , 2
例10.求
x f(x)0tdt 在( , )上的表达式.0tdt , x0解: f(x)x
tdt , x002x , x02 2x , x0.2x§5.3 定积分的换元法和分部积分法
-----高等数学教案-----1.定积分的换元法:
b af(x)dx x(t)f[(t)](其中f(x)连续,(t)有连续的导数,a(),b(),.例1. 0 4x2dx 2x11t232 32t12 x 1 tdt 2t 321 1(t3)dt 2331t(3t)1
3-----高等数学教案-----例 例
223.2. 1dx 34 1x1 x(t22t) 1(2t2)12 t2 1121 (1t)dt 2(tlnt)112
12ln2.3.2 111x 2 x2dx xsint cost 24
-----高等数学教案-----
sin2tcostdt
2 例
2 cottdt
4 2(csc2 t1)dt
4(cottt)2
414. 5 02sinxcosxdx
5 02cosxdcosx
(166cosx)20
16.-----高等数学教案-----
4.例5. 0x(2x)dx
12421 0(2x)d(2x)2
25111
[(2x)]0
2531
.102.设f(x)在[a , a]上连续且为偶函数,则
a a af(x)dx2 0f(x)dx.证: a 0 a af(x)dx af(x)dx 0f(x)dx.12
4-----高等数学教案----- af(x)dx xt af(t)( 0 0
af(t)dt 0f(t)dt 0f(x)dx.a a 0所
以
a a a af(x)dx 0f(x)dx 0f(x)dx
2 0f(x)dx.a3.设f(x)在[a , a]上连续且
a为奇函数,则
af(x)dx0.xsinxdx.例6.求 242x3x1 2
-----高等数学教案-----
32xsinx解: 由于f(x)42x3x132是 2奇3函2数,所以
xsinxdx0. 242x3x1例7.求 1sinx(arctanx).dx 121x解: 原式1sinx 1(arctanx). 1dxdx22 11x1xsinx由于f(x)2是奇函数,1x
-----高等数学教案-----以(arctanx)是偶函数,所g(x)21x(arctanx)原式02 0 dx21x 122 0(arctanx)d(arctanx)122
312[(arctanx)]0
332()3496例8.设f(x)在[0 , a]上连续,-----高等数学教案-----.3证明: 0f(x)dx 0f(ax)dx.a a证 0f(x)dx 0 xat af(at)(dt)a:
af(at)dt 0f(at)dt 0f(ax)dx.a 0 a
例9.若f(x)在[0 , 1]上连续,证明: f(sinx)dx
-----高等数学教案-----2 0f(cosx)dx.2 0 证: f(sinx)dx
xt 2 2 0f(cost)(d 2 0
f(cost)dt
2 0f(cosx)dx.2 0
例10.若f(x)在[0 , 1]上连续,证明: 0xf(sinx)dx .f(sinx)dx 02
-----高等数学教案-----证: 0xf(sinx)dx
0 xt (t)f(sint)
0(t)f(sint)dt 0f(sint)dt 0tf(sint)dt
0f(sinx)dx 0xf(sinx)dx. 解 0 得
.f(sinx)dx 02例11.若f(x)为连续函数,xf(sinx)dx
-----高等数学教案-----且ef(xt)dtxe,求f(x)的表达式.xt证: 0ef(xt)dt xt 0x txu xe 0xuf(u)(du)
eef(u)du x xue 0ef(u)du.ux 0 x所以eef(u)duxe,得
xu 0ef(u)dux.将上式两边对x求导数,得
x ef(x)1,x x 0ux
-----高等数学教案-----即
f(x)e.4.定积分的分部积分法:
x
auvdx(uv) auvdx.bba b
例12. 1lnxdx(xlnx) 1dx
55ln5x1 55155ln54.例13. 0xedx(xe) 0edx
x1ee0 1xx10 1x1.例14.若f(x)是以T为周期的连续函数,证明:
-----高等数学教案----- af(x)dx 0f(x)dx 其中a为常数.aT T证: a 0 aTf(x)dx
T aT af(x)dx 0f(x)dx T aT Tf(x)dx
af(x)dx
xuT 0f(uT)du 0f(u)du 0f(x)dx af(x)dx.0 a a所以
a aT 0f(x)dx
T 0 af(x)dx 0f(x)dx af(x)dx
-----高等数学教案----- 0f(x)dx.T例15.设f(x)在( , )上连续,证明: 1lim[f(xh)f(x)]dxf(b)f(a)
bh0h a证: 设f(x)的一个原函数为F(x),则
b1lima [f(xh)f(x)]dx h0h[F(xh)F(x)]lim h0hF(bh)F(b)limh0hF(ah)F(a)limh0h
-----高等数学教案-----
baF(b)F(a)f(b)f(a).§5.4 反常积分 1.无穷限的反常积分: ①设f(x)在[a , )上连续,存在,f(x)dxta,如果tlim a则称反常义积分 af(x)dx收敛,且
t
af(x)dxtlim.f(x)dx a t否则称反常积分 af(x)dx发散.
-----高等数学教案-----②设f(x)在( , b]上连续,tb,如果limtf(x)dx存在,tb则称反常义积分f(x)dx收敛,且
b
f(x)dxtlim.f(x)dxtb b否则称反常积分f(x)dx发散.③设f(x)在( , )上连 0 续,如果 f(x)dx与 0f(x)dx都收敛,则称反常积分 f(x)dx收敛,且
b
-----高等数学教案----- f(x)dx f(x)dx 0f(x)dx.0 否则称反常积分 f(x)dx发散.2.引入记号:
F()limF(x),xF()limF(x).x若在[a , )上F(x)f(x),则当F()存在时, af(x)dxF()F(a)
[F(x)].a
-----高等数学教案-----若在( , b]上F(x)f(x),则当F()存在时,bf(x)dxF(b)F()
[F(x)].b若在上( , )F(x)f(x),则当F()与F()都存在时,f(x)dxF()F()
[F(x)].例1.判断反常积分
x 0xedx
2-----高等数学教案-----是否收敛,若收敛求其值.x1解: 原式(e)0 2x11
xlim(e) 221 .2
例2.判断反常积分
1 cosxdx
22的敛散性.解: 原式(sinx)
1sin(1)limsinx.xsinx不存在,由于xlim所以反
-----高等数学教案-----常积分 cosxdx发散.例3.讨论反常积分 1 1 1xdx.解: 1 1xdx (lnx)1 , (111x)1
-----高等数学教案-----
1 1的敛散性 , , 1 , 1 11 , 1 1 1xdx,当1时发散.例4.判断反常积分
1 1x2dx.解: 1 1x2dx
-----高等数学教案-----
1所以反常积分时收敛,当 的敛散性 (arctanx)0(arctanx)0
22. 1
例5.判断反常积分
1dx
2xx 的敛散性.1dx解: 1 2xx 11 1()dx x1x[lnxln(1x)]1
-----高等数学教案-----
x[ln]1 1xx1limlnln x1x2ln2.3.如果f(x)在点a的任一邻域内都无界,那么称点a为f(x)的瑕点.4.无界函数的反常积分(瑕积分): ①设f(x)在(a , b]上连续,点a为f(x)的瑕点,ta.如果limtf(x)dx存在,则称反常积ta
-----高等数学教案-----b分 af(x)dx收敛,且 b
af(x)dxlimtf(x)dx.b bt a否则称反常积分 af(x)dx发散.②设f(x)在[a , b)上连续,点b为f(x)的瑕点,tb.如果
blimaf(x)dx存在,则称反常积tbt分 af(x)dx收敛,且 b
af(x)dxlimaf(x)dx.btt b否则称反常积分 af(x)dx发散.③设f(x)在[a , b]上除点c(acb)外连续,点c为f(x)的 b
-----高等数学教案-----瑕点.如果两个反常积分
b c af(x)dx、 cf(x)dx都收敛,则
b称反常积分 af(x)dx收敛,且 b c b af(x)dx af(x)dx cf(x)dx.b否则称反常积分 af(x)dx发散.5.引入记号: ①设F(x)为f(x)在(a , b]上的一个原函数,a为f(x)的瑕点,则
b af(x)dxF(b)limF(x)
xa[F(x)].ba
-----高等数学教案-----②设F(x)为f(x)在[a , b)上的一个原函数,b为f(x)的瑕点,则
b af(x)dxlimF(x)F(a)
xb[F(x)].ba
例6.判断反常积分 0lnxdx的敛散性.1解: 0lnxdx(xlnx)0dx 11010lim(xlnx)x
x 0101.-----高等数学教案-----
1例7.讨论反常积分 0dxx 1的敛散性.解: 11 0xdx
(lnx)10 , 1(1111 x)0 , 1
0limx 0lnx , 1lim 0(11x11x)
-----高等数学教案-----
1 1 , 1 , 11 , 1 , 1 11所以反常积分 0dx,当1x时收敛,当1时发散.11
例8.判断反常积分 12dxx的敛散性.1解: 12dx x 01 11 12dx 02dx
xx 1
-----高等数学教案-----
高等数学课件【篇6】
高等数学教案
课程的性质与任务
高等数学是计算机科学与技术;信息管理与信息系统两个专业的一门重要的基础理论课,通过本课程的学习,也是该专业的核心课程。要使学生获得“向量代数”与“空间解析几何”,“微积分”,“常微分方程与无穷级数”等方面的基本概论、基本理论与基本运算;同时要通过各个教学环节逐步培训学生的抽象概括能力、逻辑推理能力、空间想象能力和自学能力。在传授知识的同时,要着眼于提高学生的数学素质,培养学生用数学的方法去解决实际问题的意识、兴趣和能力。
第一章:函数与极限
教学目的与要求
18学时
1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。2.解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。4.掌握基本初等函数的性质及其图形。
5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第一节:映射与函数
一、集合
1、集合概念
具有某种特定性质的事物的总体叫做集合。组成这个集合的事物称为该集合的元素 表示方法:用A,B,C,D表示集合;用a,b,c,d表示集合中的元素
1)A{a1,a2,a3,} 2)A{xx的性质P}
元素与集合的关系:aA
aA
一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。常见的数集:N,Z,Q,R,N+
元素与集合的关系:
A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作AB。
如果集合A与集合B互为子集,则称A与B相等,记作AB 若作AB且AB则称A是B的真子集。空集: A2、集合的运算
并集AB :AB{x|xA或xB} 交集AB :AB{x|xA且xB}
差集
AB:AB{x|xA且xB
全集I、E
补集AC:
集合的并、交、余运算满足下列法则: 交换律、ABBA
ABBA 结合律、(AB)CA(BC)
(AB)CA(BC)分配律
(AB)C(AC)(BC)
(AB)C(AC)(BC)
对偶律
(AB)AB
(AB)AB 笛卡儿积A×B{(x,y)|xA且yB}
3、区间和邻域
开区间
(a,b)闭区间
a,b 半开半闭区间
a,b有限、无限区间 cccccca,b
邻域:U(a)
U(a,){xaxa}
a 邻域的中心
邻域的半径
去心邻域
U(a,)
左、右邻域
二、映射 1.映射概念
定义
设X,Y是两个非空集合,如果存在一个法则f,使得对X中的每一个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作
f:XY
其中y 称为元素x的像,并记作f(x),即
yf(x)
注意:1)集合X;集合Y;对应法则f
2)每个X有唯一的像;每个Y的原像不唯一
3)单射、满射、双射
2、映射、复合映射
三、函数
1、函数的概念:
定义:设数集DR,则称映射f:DR为定义在D上的函数
记为
yf(x)xD
自变量、因变量、定义域、值域、函数值
用f、g、
函数相等:定义域、对应法则相等
自然定义函数;单值函数;多值函数、单值分枝.例:1)y=2
2)y=x
3)符号函数
1y01x0x0x04)取整函数 yx
(阶梯曲线)
2x0x1x15)分段函数 y
2、函数的几种特性
1x1)函数的有界性(上界、下界;有界、无界)有界的充要条件:既有上界又有下界。注:不同函数、不同定义域,有界性变化。
2)函数的单调性(单增、单减)在x1、x2点比较函数值
f(x1)与f(x2)的大小(注:与区间有关)3)函数的奇偶性(定义域对称、f(x)与f(x)关系决定)
图形特点(关于原点、Y轴对称)
4)函数的周期性(定义域中成立:f(xl)f(x))
3、反函数与复合函数
反函数:函数f:Df(D)是单射,则有逆映射f反函数
函数与反函数的图像关yx于对称
复合函数:函数ug(y)定义域为D1,函数yf(x)在D上有定义、且f(D)D1。则ug(f(x))gf(x)为复合函数。(注意:构成条件)
4、函数的运算
和、差、积、商(注:只有定义域相同的函数才能运算)
5、初等函数:
1(y)x,称此映射f1为f函数的
1)幂函数:yxa
2)指数函数:yax
3)对数函数 yloga(x)
4)三角函数
()
ysin(x),ycos(x),ytan(x),ycotx
5)反三角函数
yarcsin(x),yarccoxs)(yarctan(x)以上五种函数为基本初等函数
6)双曲函数
ee2xxyarccot(x)
shx
chxxxxxee2xx
thxshxchxeeee
注:双曲函数的单调性、奇偶性。
双曲函数公式
sh(xy)shxchychxshysh(xy)shxchychxshych(xy)chxchyshxshy ch(xy)chxchyshxshyyarshx反双曲函数:yarchxyarthx
作业: 同步练习册练习一
第二节:数列的极限
一、数列
数列就是由数组成的序列。
1)这个序列中的每个数都编了号。
2)序列中有无限多个成员。一般写成:a1缩写为un
例 1 数列是这样一个数列xn,其中
n1a2a3a4an
xn也可写为:
1121n,n1,2,3,4,5
131415
1n0 可发现:这个数列有个趋势,数值越来越小,无限接近0,记为lim1、极限的N定义:
0NnNnxna则称数列xn的极限为a,记成
limxna
n也可等价表述:
1)0
2)0NNnNnN(xna)
xnO(a)
极限是数列中数的变化总趋势,因此与数列中某个、前几个的值没有关系。
二、收敛数列的性质
定理1:如果数列xn收敛,那么它的极限是唯一 定理2 如果数列xn收敛,那么数列xn一定有界
定理3:如果limxna且a>0(a0,当n>N时,xn0x(xn0)
定理
4、如果数列{xn}收敛于a那么它的任一子 数列也收敛,且收敛于a。
第三节:函数的极限
一、极限的定义
1、在x0点的极限
1)x0可在函数的定义域内,也可不在,不涉及f在x0有没有定义,以及函数值f(x0)的大小。只要满足:存在某个0使:(x0,x0)(x0,x0)D。2)如果自变量x趋于x0时,相应的函数值 f(x)有一个总趋势-----以某个实数A为极限,则记为 :limf(x)A。
xx0形式定义为:
0x(0xx0)注:左、右极限。单侧极限、极限的关系
2、x的极限
设:yf(x)x(,)如果当时函数值 有一个总趋势------该曲线有一条水平渐近
f(x)A
线yA-----则称函数在无限远点有极限。记为:limf(x)A
x
在无穷远点的左右极限:
f()lim关系为: xf(x)
f()limf(x)
xlimf(x)Alimf(x)Alimf(x)
xxx
二、函数极限的性质
1、极限的唯一性
2、函数极限的局部有界性
3、函数极限的局部保号性
4、函数极限与数列极限的关系
第四节:无穷小与无穷大
一、无穷小定义
定义:对一个数列xn,如果成立如下的命题: 0NnNxn注:
1、 则称它为无穷小量,即limxn0
x的意义;
2、xn可写成xn0;(0,xn)
3、上述命题可翻译成:对于任意小的正数,存在一个号码N,使在这个号码以后的所有的号码n,相应的xn与极限0的距离比这个给定的还小。它是我们在直观上对于一个数列趋于0的认识。
定理1 在自变量的同一变化过程xx0(或x)中,函数fx具有极限A的充分必要条件是f(x)A,其中是无穷小。
二、无穷大定义
一个数列xn,如果成立:
G0NnNxnG那么称它为无穷大量。记成:limxn。
x 特别地,如果G0NnNxnG,则称为正无穷大,记成limxn
x特别地,如果G0NnNxnG,则称为负无穷大,记成limxn x注:无法区分正负无穷大时就笼统地称之为无穷大量。
三、无穷小和无穷大的关系
定理2 在自变量的同一变化过程中,如果f(x)为无穷大,则
1f(x)为无穷小;反之,如果f(x)为无穷小,且f(x)0则
1f(x)为无穷大
即:非零的无穷小量与无穷大量是倒数关系:当xn0时:有
lim0limx1xnx
limlimx1xnx0
注意是在自变量的同一个变化过程中
第五节:极限运算法则
1、无穷小的性质
设xn和yn是无穷小量于是:(1)两个无穷小量的和差也是无穷小量:
limxn0xlimyn0lim(xnyn)0
xx(2)对于任意常数C,数列cxn也是无穷小量:
limxn0lim(cxn)0 xx(3)xnyn也是无穷小量,两个无穷小量的积是一个无穷小量。
limxn0xlimyn0lim(xnyn)0
xx(4)xn也是无穷小量:
xx0limxn0limxn0
xx0(5)无穷小与有界函数的积为无穷小。
2、函数极限的四则运算
1、若函数f和g在点x0有极限,则
lim(f(x)g(x))limf(x)limg(x)
xx0xx0xx0
2、函数f在点x0有极限,则对任何常数a成立
lim(af(x))alimxx0xx0f(x)
3、若函数f和g在点x0有极限,则
lim(f(x)g(x))limf(x)limg(x)
xx0xx0xx03、若函数f和g在点x0有极限,并且limg(x)0,则
xx0limf(x)f(x)xx0
lim
xx0g(x)limg(x)xx0极限的四则运算成立的条件是若函数f和g在点x0有极限 例:求下述极限
lim
x3x3x92limx12x3x5x42limx3x2x12xx5322
4、limx3x4x27x5x33232limxsinxxlimx2xx53x2x1232复合函数的极限运算法则
定理6 设函数yf[g(x)}是由函数yf(u)与ug(x)复合而成,f[g(x)]在点x0的 某去心邻域内有定义,若limg(x)u0,xx00uu0limf(u)A,且存在00,当xu(x0,0)时,有
g(x)u0,则
xx0limf[g(x)]limf(u)Auu0第六节:极限存在准则
两个重要极限
定理1 夹逼定理 :三数列xn、yn和zn,如果从某个号码起成立:1)xnynzn,并且已知xn和zn收敛,2)limxnalimzn,则有结论:
xxlimyna
x
定理2 单调有界数列一定收敛。
单调增加有上界的数列一定收敛;单调减少有下界的数列一定收敛。
例:证明:limx0sinxx1
例:
limx0
例:证明:lim(1xtanxx
limx01cosxxlimx0arcsinxx
1x)有界。求 lim(1)x的极限
xx1x
第七节:无穷小的比较
定义:若,为无穷小
limlim0c0c01且
limlimlim
K高阶、低阶、同阶、k阶、等价~
1、若,为等价无穷小,则()
2、若~1、~1且
lim1111存在,则: limlim
例:
limx0tan2xsin5x limx0sinxx3xlimx0(1x)31cosx12
第八节:函数的连续性与间断点
一、函数在一点的连续性
函数f在点x0连续,当且仅当该点的函数值f(x0)、左极限f(x00)与右极限f(x00)三者相等:
f(x00)f(x0)f(x00)
或者:当且仅当函数f在点x0有极限且此极限等于该点的函数值。
limf(x)f(x0)
其形式定义如下:
xx00x(xx0)f(x)f(x0)
函数在区间(a,b)连续指:区间中每一点都连续。函数在区间[a,b]连续时装意端点。注:左右连续,在区间上连续(注意端点)
连续函数的图像是一条连续且不间断的曲线
二、间断点
若:f(x00)f(x0)f(x00)中有某一个等式不成立,就间断,分为:
1、第一类间断点:
f(x00)f(x00)
即函数在点的左右极限皆存在但不相等,曲线段上出现一个跳跃。、第二类间断点x0:左极限f(x00)与右极限f(x00)两者之中至少有一个不存在
例:见教材
第九节:连续函数的运算与初等函数的连续性
一、连续函数的四则运算
1.limf(x)f(x0)且limg(x)g(x0),xx0xx0limf(x)g(x)f(x0)g(x0)
xx02limf(x)f(x0)且limg(x)g(x0),xx0xx0limxx0f(x)g(x)xx0f(x0)g(x0)
3.limf(x)f(x0)且limg(x)g(x0)0,xx0limxxf(x)0g(x)f(x0)g(x0)
xDf是严格单调增加(减少)并且连续
反函数连续定理:如果函数f:yf(x)的,则存在它的反函数f并且连续的。
注: 1)反函数的定义域就是原来的值域。
1:xf1(y)yDf并且f1也是严格单调增加(减少)2)通常惯用X表示自变量,Y表示因变量。反函数也可表成
yf1(x)xDf1
复合函数的连续性定理:
设函数f和g满足复合条件gDf,若函数g在点x0连续;g(x0)u0,又若f函数在点u0连续,则复合函数fg在点x0连续。
注:复合函数的连续性可以保证极限号与函数符号的交换:
xx0limf(g(x))f(limg(x))
xx0从这些基本初等函数出,通过若干次四则运算以及复合,得到的种种函数统称为初等函数,并且:初等函数在其定义区间内连续。
第十节:闭区间上连续函数的性质
一、最大、最小值
设函数:yf(x),xD在上有界,现在问在值域
D1yyf(x),xD
中是否有一个最大的实数?如果存在,譬如说它是某个点x0D的函数值 y0f(x0),则记y0maxf(x)叫做函数在D上的最大值。
xD
类似地,如果 Df中有一个最小实数,譬如说它是某个点x2Df的函数值y2f(x2),则记y2min
二、有界性
xDff(x)称为函数在上的最小值。
有界性定理:如果函数f在闭区间a,b上连续,则它在a,b上有界。
三、零点、介值定理
最大值和最小值定理:如果函数 f在闭区间a,b上连续则它在a,b上有最大值和最小值,也就是说存在两个点和,使得
f()f(x)f(),亦即
xa,b
f()min xa,bf(x)
f()maxf(x)
xa,b 若x0使f(x0)0,则称x0为函数的零点
零点定理:
如果函数f在闭区间a,b上连续,且f在区间a,b的两个端点异号:f(a)*f(b)0则至少有一个零点(a,b),使f()0
中值定理:
如果函数f在闭区间a,b上连续,则f在a,b上能取到它的最大值和最小值之间的任何一个中间值。
作业:见课后各章节练习。
高等数学课件【篇7】
高等数学教案
定积分的应用
教学目的 第六章
定积分的应用
1、理解元素法的基本思想;
2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点:
1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等。教学难点:
1、截面面积为已知的立体体积。
2、引力。
§6 1 定积分的元素法
回忆曲边梯形的面积
设yf(x)0(x[a b]) 如果说积分
Aaf(x)dx
b是以[a b]为底的曲边梯形的面积 则积分上限函数
A(x)af(t)dt
x就是以[a x]为底的曲边梯形的面积 而微分dA(x)f(x)dx 表示点x处以dx为宽的小曲边梯形面积的近似值Af(x)dxf(x)dx称为曲边梯形的面积元素
以[a b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式 以 [a b]为积分区间的定积分
Aaf(x)dx
b
一般情况下 为求某一量U 先将此量分布在某一区间[a b]上 分布在[a x]上的量用函数U(x)表示 再求这一量的元素dU(x) 设dU(x)u(x)dx 然后以u(x)dx为被积表达式 以[a b]为积分区间求定积分即得
Uaf(x)dx
b
用这一方法求一量的值的方法称为微元法(或元素法)
三峡大学高等数学课程建设组
高等数学教案
定积分的应用
§6 2 定积分在几何上的应用
一、平面图形的面积
1.直角坐标情形
设平面图形由上下两条曲线yf上(x)与yf下(x)及左右两条直线xa与xb所围成 则面积元素为[f上(x) f下(x)]dx 于是平面图形的面积为
Sa[f上(x)f下(x)]dx
类似地由左右两条曲线x左(y)与x右(y)及上下两条直线yd与yc所围成设平面图形的面积为
Sc[右(y)左(y)]dy
例1 计算抛物线y2x、yx2所围成的图形的面积
解(1)画图
(2)确定在x轴上的投影区间: [0 1](3)确定上下曲线f上(x)x, f下(x)x2
(4)计算积分 db1
S(xx)dx[2x21x3]10033321
3例2 计算抛物线y22x与直线yx4所围成的图形的面积
解(1)画图
(2)确定在y轴上的投影区间: [2 4](3)确定左右曲线左(y)1y2, 右(y)y4
2(4)计算积分418
S2(y41y2)dy[1y24y1y3]426222y 例3 求椭圆x221所围成的图形的面积
ab 解 设整个椭圆的面积是椭圆在第一象限部分的四倍 椭圆在第一象限部分在x 轴上的投影区间为[0 a] 因为面积元素为ydx
所以 2S40ydx a椭圆的参数方程为: xa cos t yb sin t
于是
S40ydx4bsintd(acost)
2a0三峡大学高等数学课程建设组
高等数学教案
定积分的应用
4absintdt2ab02(1cos2t)dt2abab
2202
2.极坐标情形
曲边扇形及曲边扇形的面积元素
由曲线()及射线 围成的图形称为曲边扇形 曲边扇形的面积元素为 dS1[()]2d 2曲边扇形的面积为
S1[()]2d 2
例4.计算阿基米德螺线a(a >0)上相应于从0变到2 的一段弧与极轴所围成的图形的面积
224a23
解: S01(a)2d1a2[13]02332
例5.计算心形线a(1cos)(a>0)所围成的图形的面积
解: S201[a(1cos]2da20(12cos1cos2)d
22232
a2[32sin1sin2]0a
242
二、体 积
1.旋转体的体积
旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体 这直线叫做旋转轴
常见的旋转体 圆柱、圆锥、圆台、球体
旋转体都可以看作是由连续曲线yf(x)、直线xa、ab 及x轴所围成的曲边梯形绕x轴旋转一周而成的立体
设过区间[a b]内点x 且垂直于x轴的平面左侧的旋转体的体积为V(x) 当平面左右平移dx后 体积的增量近似为V[f(x)]2dx
于是体积元素为
dV [f(x)]2dx
旋转体的体积为
Va[f(x)]2dx
例
1连接坐标原点O及点P(h r)的直线、直线xh 及x 轴围成一个直角三角形 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体 计算这圆锥体的体积
解: 直角三角形斜边的直线方程为yrx
h
所求圆锥体的体积为
三峡大学高等数学课程建设组
b高等数学教案
定积分的应用
22hrr1hr2
V0(x)dx2[1x3]0h3h32y2x 例2 计算由椭圆221所成的图形绕x轴旋转而成的旋转体(旋转椭球体)的体积
ab
解: 这个旋转椭球体也可以看作是由半个椭圆 h
yba2x2
a及x轴围成的图形绕x轴旋转而成的立体 体积元素为dV y 2dx
于是所求旋转椭球体的体积为
22a2 Vb2(a2x2)dxb2[a2x1x3]aaab
a33aa
例3 计算由摆线xa(tsin t) ya(1cos t)的一拱 直线y0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积
解
所给图形绕x轴旋转而成的旋转体的体积为
Vx0y2dx0a2(1cost)2a(1cost)dt
a30(13cost3cos2tcos3t)dt
5 2a 3
所给图形绕y轴旋转而成的旋转体的体积是两个旋转体体积的差 设曲线左半边为x=x1(y)、右半边为x=x2(y) 则
22(y)dy0x1(y)dy
Vy0x22a2a22a2
2a2(tsint)2asintdt0a2(tsint)2asintdt
a30(tsint)2sintdt6 3a 3
2.平行截面面积为已知的立体的体积
设立体在x轴的投影区间为[a b] 过点x 且垂直于x轴的平面与立体相截 截面面积为A(x) 则体积元素为A(x)dx 立体的体积为
VaA(x)dx
例4 一平面经过半径为R的圆柱体的底圆中心 并与底面交成角 计算这平面截圆柱所得立体的体积
解 取这平面与圆柱体的底面的交线为x轴 底面上过圆中心、且垂直于x轴的直线为y轴 那么底圆的方程为x 2 y 2R 2 立体中过点x且垂直于x轴的截面是一个直角三角形 两个直角边分别为R2x2及R2x2tan 因而截面积为
三峡大学高等数学课程建设组
b2高等数学教案
定积分的应用
A(x)1(R2x2)tan 于是所求的立体体积为
2RR2R3tan
VR1(R2x2)tandx1tan[R2x1x3]R223
3例5 求以半径为R的圆为底、平行且等于底圆直径的线段为顶、高为h的正劈锥体的体积
解: 取底圆所在的平面为x O y平面 圆心为原点 并使x轴与正劈锥的顶平行 底圆的方程为x 2 y 2R 2 过x轴上的点x(RA(x)hyhR2x2于是所求正劈锥体的体积为VRhR2x2dx2R2h2co2sd1R2h02R三、平面曲线的弧长设A B 是曲线弧上的两个端点 在弧AB上任取分点AM0 M1 M2 Mi1 Mi Mn1 MnB 并依次连接相邻的分点得一内接折线 当分点的数目无限增加且每个小段Mi1Mi都缩向一点时 如果此折线的长|Mi1Mi|的极限存在 则称此极限为曲线弧AB的弧长 并称此曲线i1n弧AB是可求长的定理光滑曲线弧是可求长的1.直角坐标情形设曲线弧由直角坐标方程yf(x)(axb)给出 其中f(x)在区间[a b]上具有一阶连续导数 现在来计算这曲线弧的长度取横坐标x为积分变量 它的变化区间为[a b] 曲线yf(x)上相应于[a b]上任一小区间[x xdx]的一段弧的长度 可以用该曲线在点(x f(x))处的切线上相应的一小段的长度来近似代替 而切线上这相应的小段的长度为(dx)2(dy)21y2dx从而得弧长元素(即弧微分)ds1y2dx以1y2dx为被积表达式 在闭区间[a b]上作定积分 便得所求的弧长为sa1y2dx三峡大学高等数学课程建设组b高等数学教案定积分的应用在曲率一节中 我们已经知道弧微分的表达式为ds1y2dx这也就是弧长元素因此例1 计算曲线y2x2上相应于x从a到b的一段弧的长度3解 yx2 从而弧长元素 13ds1y2dx1xdx因此 所求弧长为sab2221xdx[2(1x)2]ba[(1b)(1a)]33333例2 计算悬链线ycchx上介于xb与xb之间一段弧的长度c解 yshx 从而弧长元素为cds1sh2xdxchxdxcc因此 所求弧长为bbbsbchxdx20chxdx2c[shxdx]b02cshcccc2.参数方程情形设曲线弧由参数方程x(t)、y(t)(t)给出 其中(t)、(t)在[ ]上具有连续导数dy(t)因为 dx(t)d t 所以弧长元素为 dx(t)2(t)ds12(t)dt2(t)2(t)dt(t)所求弧长为s2(t)2(t)dt例3 计算摆线xa(sin) ya(1cos)的一拱(0 2)的长度解 弧长元素为dsa2(1cos)2a2sin2da2(1cos)d2asind2所求弧长为2s02asind2a[2cos]08a222三峡大学高等数学课程建设组高等数学教案定积分的应用3.极坐标情形设曲线弧由极坐标方程()( )给出 其中r()在[ ]上具有连续导数 由直角坐标与极坐标的关系可得x()cosy()sin( ) 于是得弧长元素为dsx2()y2()d2()2()d从而所求弧长为s2()2()d例4求阿基米德螺线a(a>0)相应于 从0到2 一段的弧长解弧长元素为dsa22a2da12d于是所求弧长为2s0a12da[2142ln(2142)]作业:P284:2(2)(4),3,4,5(1),10,12,15(2),18,22,23,29,30三峡大学高等数学课程建设组高等数学教案定积分的应用§6 3 功水压力和引力一、变力沿直线所作的功例1把一个带q电量的点电荷放在r轴上坐标原点O处 它产生一个电场 这个电场对周围的电荷有作用力 由物理学知道 如果有一个单位正电荷放在这个电场中距离原点O为r的地方 那么电场对它的作用力的大小为Fkq(k是常数)r2当这个单位正电荷在电场中从ra处沿r轴移动到rb(a解: 在r轴上 当单位正电荷从r移动到r+dr时电场力对它所作的功近似为k即功元素为dWk于是所求的功为 qdrr2qdrr2bkq2Wa11drkq[1]bakq()rabr例2在底面积为S的圆柱形容器中盛有一定量的气体 在等温条件下 由于气体的膨胀把容器中的一个活塞(面积为S)从点a处推移到点b处 计算在移动过程中 气体压力所作的功解 取坐标系如图 活塞的位置可以用坐标x来表示 由物理学知道 一定量的气体在等温条件下 压强p与体积V的乘积是常数k 即pVk 或pkV在点x处 因为VxS 所以作在活塞上的力为FpSkSkxSx当活塞从x移动到xdx时 变力所作的功近似为kdx x即功元素为dWkdxx于是所求的功为bbWakdxk[lnx]baklnxa例3 一圆柱形的贮水桶高为5m 底圆半径为3m 桶内盛满了水 试问要把桶内的水全部吸出需作多少功?解 作x轴如图 取深度x 为积分变量 它的变化区间为[0 5] 相应于[0 5]上任小区间[x xdx]的一薄层水的高度为dx 水的比重为98kN/m3 因此如x的单位为m 这薄层水的重力为9832dx 这薄层水吸出桶外需作的功近似地为三峡大学高等数学课程建设组高等数学教案定积分的应用dW882xdx此即功元素 于是所求的功为225(kj)xW088.2xdx88.2[]5088.2225二、水压力从物理学知道 在水深为h处的压强为ph 这里 是水的比重 如果有一面积为A 的平板水平地放置在水深为h处 那么平板一侧所受的水压力为PpA如果这个平板铅直放置在水中 那么 由于水深不同的点处压强p不相等 所以平板所受水的压力就不能用上述方法计算例4 一个横放着的圆柱形水桶 桶内盛有半桶水 设桶的底半径为R 水的比重为 计算桶的一个端面上所受的压力解 桶的一个端面是圆片 与水接触的是下半圆 取坐标系如图在水深x处于圆片上取一窄条 其宽为dx 得压力元素为dP2xR2x2dx所求压力为P02 xRxdx(R03R2rR3[2(R2x2)2]033R22R2122x)d(R2x2)三、引力从物理学知道 质量分别为m1、m 2 相距为r的两质点间的引力的大小为FGm1m2r2其中G为引力系数 引力的方向沿着两质点连线方向如果要计算一根细棒对一个质点的引力 那么 由于细棒上各点与该质点的距离是变化的 且各点对该质点的引力的方向也是变化的 就不能用上述公式来计算例5 设有一长度为l、线密度为的均匀细直棒 在其中垂线上距棒a单位处有一质量为m的质点M 试计算该棒对质点M的引力解 取坐标系如图 使棒位于y轴上 质点M位于x轴上 棒的中点为原点O 由对称性知 引力在垂直方向上的分量为零 所以只需求引力在水平方向的分量 取y为积分变量 它的变化区间为[l, l] 在[l, l]上y点取长为dy 的一小段 其质量为dy 与M相距ra2y2 于2222是在水平方向上 引力元素为dFxGmdyamdyaGa2y2a2y2(a2y2)3/2三峡大学高等数学课程建设组高等数学教案定积分的应用引力在水平方向的分量为Fx2lG2l2Gmlamdy1223/222a(ay)4al作业:P292:3(2),6三峡大学高等数学课程建设组
高等数学课件【篇8】
高等数学课件
概述
高等数学课件是高等数学教学中的重要工具,它既可以为学生提供优质的教学资源,又可以方便教师在课堂上进行讲解和演示。本文将从高等数学课件的重要性、设计原则、优化方法等多个方面探讨高等数学课件的相关主题。
一、高等数学课件的重要性
随着新科技新媒体的不断发展,高等数学教学方式也在不断更新和改变。在这种转变的过程中,高等数学课件作为数字教学的一种重要形式,为高等数学教学注入了新的思路和动力。高等数学课件是教学内容和方式中不可或缺的一部分。有以下几个方面的重要性:
1. 丰富了教学形式。高等数学课件在创新教学方式、提升教学效果上发挥了重要作用,丰富了教学形式,激发和鼓励学生的学习兴趣和积极性,帮助学生更好地理解和掌握知识。
2. 增强了教学效果。优质的高等数学课件不仅可以帮助学生把握重点难点,而且能够提高学生的数学素养,方便学生自主学习。
3. 提高了教学效率。在利用高等数学课件辅助教学过程中,教师可以通过多种手段进行教学,比如具体实例、图表、动画展示等,这些手段可以帮助学生更好地认知、理解知识,以及提高学习的效率和速度。
二、高等数学课件的设计原则
高等数学课件的设计初衷是为了提供清晰、明确、系统、连贯、易懂的知识体系,让学生能够在短时间内准确地理解和掌握知识点。因此在设计过程中要考虑以下原则:
1. 突出主题,精细化呈现。高等数学课件的细节处理控制在一个较高的水平上,每个细节都与主题息息相关。这样可以让学生在教学内容的把握上更加轻松自如。
2. 列举实例,举一反三。在高等数学课件中,适当添加实例可以帮助学生理解更抽象的概念,而举一反三可以帮助学生迅速将知识点推广到其他学科或问题上。
3. 注重感性体验。高等数学是一个抽象的概念体系,因此在高等数学课件中,引入视觉、听觉、触觉的感性元素是很重要的。
4. 应用到实践中。高等数学学科充满了实际应用和探究,因此在高等数学课件中注入实际应用和解决实际问题的思想是必要的。
三、高等数学课件的优化方法
高等数学课件的优化可以从多个方面入手,以下为具体方法:
1.优化课件框架结构。将课件内容由片段连接成为整体,分层次组织,有助于学生对知识体系有更全面、更深刻的认识。
2.优化教学手段。引入多媒体等新手段与学生互动,使得教学过程捕捉到学生的兴趣点,激发学习热情。
3.优化课件配色和排版。科学选取配色方案、字体等,好的课件界面可以让学生感受更强烈的视觉冲击力,更加吸引人眼球。
4.优化教学策略。教学策略的优化应该注重把与学生思想相融合在一起,使得理论和实践能够相辅相成,提高学生的综合能力。
总之,高等数学课件作为一种新型的数字教育资源,可以帮助学生从认知的角度快速学习和理解高等数学知识,具有课程教学的辅助功能,可以为高等数学的教学和学习提供更便捷、更高效的支持和辅助。
高等数学课件【篇9】
高等数学课件
高等数学是大学中的一门重要课程,是对初等数学知识的深入拓展和扩展。随着信息技术的发展,现代高等学校中的教学方式不断创新,数字化教学逐渐取代了传统的黑板讲解。因此,针对高等数学的课件设计变得至关重要。本文将介绍高等数学课件的相关内容。
高等数学课件是一种集有声有图、传统理论知识和实例演练于一体的教学工具。它采用计算机软件或多媒体技术来实现直观显示,可以方便地呈现各种图形、表格和数学公式,使学生更好地理解难点知识,提高学习效率。
高等数学课件的设计要求具有系统性、科学性和趣味性。在系统性方面,教师应当将知识点通过各种图形和公式贯穿整个课件,以便学生清晰地掌握概念和技巧。科学性则要求讲解能够严谨地基于数学公理和定理,并通过适当的实例展示其应用。而趣味性则要求课件能够使学生在学习的过程中,不断体验到数学知识的神奇之处,增强其兴趣。
高等数学课件可以按照教学目标、内容和难度进行分类。就教学目标而言,高等数学课件可以分为“概念讲解”、“方法演示”和“综合应用”三种类型。就内容而言,高等数学课件可以分为“微积分”、“线性代数”和“概率论与数理统计”三种类型。根据难度,高等数学课件可以分为“基础入门”、“中级提高”和“高级拓展”三种类型。
根据国内外多年的教育实践,高等数学课件功能应当包括以下方面:一是一二维空间图形显示功能;二是微积分计算和图形展示功能;三是线性代数计算和矩阵运算功能;四是概率论与数理统计计算和分析功能。除此以外,高等数学课件还应该具有自由拖动、缩放、旋转、选择等一系列实用功能。
总之,高等数学课件是一种高效的数字化教学方式,在当今信息化社会中有着广泛的应用前景。它已经成为了高等数学的主要教学工具之一,将在今后的教育发展中发挥越来越重要的作用。
高等数学课件【篇10】
高等数学课程旨在让学生掌握更深入的数学知识,从而更好地应对大学数学的挑战。本文将探讨高等数学课程的相关主题,包括微积分、线性代数和概率论。通过深入分析这些主题,我们将了解高等数学课程的重要性,以及每个主题在求职和日常生活中的应用。
微积分是高等数学的重要主题之一,它是分析和计算变化的工具。微积分涵盖了一系列技术,包括导数、积分、微分方程和级数。导数是描述函数局部变化的一种工具,它可以计算函数在某一点的斜率。积分是求解函数区域面积和体积的一种方法。微分方程是描述物理现象和自然现象的一种数学模型,它们经常出现在物理、化学和生物学中。级数是在一定条件下收敛或发散的一系列数值的总和。在日常生活中,微积分被广泛应用于科学、工程和社会科学领域。从设计建筑物到制造汽车,从研究经济学到天体物理学,微积分都是必不可少的工具。
线性代数是另一个高等数学的主题,它是数学中一种重要的工具,为很多应用领域提供了支持。线性代数主要涉及矩阵理论、线性方程和向量空间。线性方程是一类能够用常数系数的线性运算来表示的方程,这些方程经常出现在工程、计算机科学和科学等领域中。向量空间是一个用来描述一组向量的集合的数学对象。矩阵是线性代数的基础,它是一种表达线性变换的工具。矩阵还被广泛应用于计算机科学、数据分析和机器学习等领域。当然,矩阵和向量还被广泛使用于日常生活中的3D游戏、物理工程和机器视觉中。
概率论是另一个在高等数学课程中非常重要的主题,它是研究随机事件的工具。概率论包括条件概率、随机变量、概率分布和假设检验等概念。条件概率是指在给定某一事件发生的前提下,另一事件发生的概率。随机变量是一种可以用数值来表示的随机事件。概率分布是随机变量的概率分布函数,描述了随机事件的可能性分布。假设检验是判断一个假设是否成立的方法。在日常生活中,概率论被广泛应用于金融学、物理学、医学、心理学和社会科学等领域。从风险管理到判断疾病诊断结果的可靠性,概率论都是必不可少的工具。
总之,高等数学课程包括微积分、线性代数和概率论等主题,这些主题是数学界中的重要工具。通过深入学习这些主题,学生可以更深入地掌握数学知识,从而更好地应对日常生活和职场上的挑战。无论我们的工作是在科学、技术、工程和数学领域,还是在其他领域,都可以从高等数学课程中获益。
高等数学课件【篇11】
高等数学课件
高等数学在大学阶段是一门重要的基础课程,也是学生进入理工科专业的必备课程。作为一门涉及到多种数学知识体系的学科,它的难度与广度都远超过中学数学。因此,在课程学习期间,教学工具的运用显得格外重要。高等数学课件是一种应用广泛、形式多样、功能强大的教学工具,为教师与学生提供了更加广阔的教学空间。
高等数学课件的优点
一、形式多样:
高等数学的知识内容对于难度和抽象程度都较大,采用不同的教学模式能够加深学生的理解和记忆。高等数学课件具有多样的形式,可以通过文字、图片、视频等多元素的形式展示数学知识,使学生更加直观的理解相关内容。
二、互动性强:
高等数学课件中的互动功能强大,学生可以通过课件进行操作、答题、模拟等等,促进学生的自我探究和激发兴趣。
三、容易更新:
高等数学是一门生动的,不断发展的学科,每年都会有新的研究结果。传统的教材需要经过一定时期的编写和审核后才能发布,而高等数学课件则可以根据新的研究成果及时更新。这样,教师能够及时将最新的研究内容带到课堂上,为学生提供最前沿的知识。
四、提高效率:
高等数学的知识内容较为繁杂,采用高等数学课件能够有效提高教学效率,使教与学更加顺畅,学生能够在更短的时间内掌握更多的知识。
高等数学课件的设计
设计高等数学课件需要注意以下几点:
一、以理解为核心:
高等数学课件的设计应该将理解作为核心,从学生的角度出发,设计内容结构,以能够让学生理解为主要宗旨。课件所呈现的每一个概念都应该注明其含义和实际意义,让学生能够更加直观地理解。
二、结合实际:
高等数学的知识内容大多会存在于生活、工程、自然等多种实际问题中,因此设计高等数学课件时,要将其与实际相结合。通过生动的实例,让学生更好地掌握相关的数学知识,从而更好地应用于实际问题中。
三、突出重点:
高等数学的知识点较多,设计课件时必须重点突出,将关键知识相应突出,让学生重点拿捏,提高学习效率。
四、操作性强:
高等数学的知识性和操作性并存,因此在设计课件时必须突出其操作性。设计相应的练习、操作,让学生通过练习加深记忆,掌握操作技巧。
总之,高等数学课件在高等数学的教学中起到了不可替代的作用,其优点和设计方面需要多方面的关注和探究,更为有效地推动高等数学教学的发展。
高等数学课件【篇12】
高等数学课件是一种重要的教学资源,能够帮助学生更好地理解和掌握数学知识,提高数学能力。在现代教育中,教育技术的发展和应用,使得教师能够使用多种形式的教学资源,包括课件等。因此,高等数学课件的编写和使用已经成为了现代高等数学教学的重要课题。
高等数学课件的编写需要考虑到学生的学习需求和教学目标。在编写课件时,应当根据课程内容、学生的知识水平、教学目标等因素进行分析和设计,以达到最好的教学效果。由于高等数学的知识层次较为复杂,因此编写高等数学课件时需要充分考虑到学生的认知模式和学习习惯,力求让学生更好地理解和掌握数学知识。
高等数学课件应具备以下几个方面的要求:
一、准确性。高等数学知识的准确性是基本要求,因为任何一个错误的公式或概念,都会对学生成长和知识的累积产生负面影响。因此在编写和使用高等数学课件时,应严格控制内容的准确性,确保学生能够掌握正确的知识和技能。
二、清晰性。高等数学是一门较为抽象的学科,对于学生来说,掌握数学知识本身就需要花费较大的认知代价。因此,在编写和使用高等数学课件时,应力求将知识的概念和原理表达得尽可能清晰和易懂,避免出现模糊或难以理解的语言和表达方式。
三、实用性。高等数学课件的编写和使用应力求贴近实际问题和应用情境,帮助学生理解知识的实际应用场景和方法,培养学生的解决实际问题的能力。
四、适用性。高等数学课件的设计应当考虑到不同年级、不同层次、不同专业学生的不同需求,尽可能做到适用性的设计,以便保持高效和灵活性。
在高等数学课件的编写和使用中,应尽可能满足学生的学习需求和教学目标,强化课程知识的建设和教学策略的完善,以提高数学教育的质量和水平。同时,高等数学课件的编写和使用应在保持教学质量和效果的同时,适应教育技术的不断创新和进步,推动教学模式和教学流程的优化和升华。