好心情说说吧,你身边的情绪管理专家!

好心情说说专题汇总 心情不好怎么办

励志的句子

【#范文大全# #体积和体积单位课件热门#】我们十分喜欢为您呈现这份精美的“体积和体积单位课件”,请将这个链接保存到您的收藏夹中以便日后查看。制作出优质的教案和课件是确保老师能够有出色授课的前提条件,因此在创作时不应敷衍了事。制作出出色的教学课件能够有效减轻教师的教学压力。

体积和体积单位课件 篇1

求 1、使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理。2、会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率。3、会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。

及难点 根据进率进行相邻体积单位的换算。

学法指导 本课充分利用多媒体的直观优势,在自主探究中推导并掌握相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。并与学过的长度单位,面积单位进行对比。促进学生的逻辑思维的发展,进一步增强学生的空间观念。

师:1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上。

师:展示学生的推导过程,将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来。

1、推导1立方分米=1000立方厘米。

教学环节设计 师:猜猜看,1立方分米等于多少立方厘米呢?你能用怎样的方法推导出来?要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来。

教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上。这样,就得到一个1立方分米=1000立方厘米的数学模型。

2、推导1立方米=1000立方分米。

教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。

问:不用操作,你能想出1立方米等于多少立方分米吗?

3、总结相邻两个体积单位间的进率。

4、构建长度、面积和体积单位的计量系统。

师:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。

师:长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的。

问:长度、面积和体积单位,它们相邻两个单位间的进率相同吗?

1立方分米=1000立方厘米。1立方米=1000立方分米。

年级:  六     主备者:  蒋天锋    备课时间:2010.9.16

求 1、能正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。

2、进一步培养学生的分析问题解决问题的能力。

及难点 能正确应用体积单位间的进率进行名数的变换,解决一些简单的实际问题。

学法指导 在认识和掌握体积单位,体积单位之间的进率的基础上,引导学生在练习中,进一步应用所学知识解决实际问题,在解决实际问题的过程中进行单位的换算,进一步巩固体积单位之间的进率。

一、问题导入。

师:上节课我们认识了体积单位之间的进率,谁能说一说体积单位之间的进率是怎样的?它与面积单位、长度单位有什么不同?

二、综合练习。

1、单位互化的基础练习。

1、做练习七的第5题。

问:每堆木块的体积与它右边的容器的溶剂有什么关系?知道了一个容器的容积是多少立方厘米,能推算出它能盛多少毫升水吗?

3、做练习七的第7题。

4、做练习七的第8题。

5、做练习七的第9题。

师:花坛的占地面积就是这个花坛的底面积;求填满这个花坛大约需要多少土,就是求花坛的容积;求需要多少平方米的木条,就是求这个花坛的侧面积。

6、做练习七的第10题。

师:引导学生说说从里面量的数据和从外面量的数据分别有什么关系。

(1)、消防队砌一面长6米,宽0.25米,高2米的训练墙。如果每立方米用砖520块,有3000块砖够不够用?

(2)、有两个长方体的水缸,甲缸长3分米,宽和高都是2分米,乙缸长4分米,宽2分米,里面的水深1.5分米,现在把乙缸的水倒入甲缸,水在甲缸里深几分米?

教学环节设计 四、评价总结。

这节课我们学习了哪些内容?你觉得那些地方值得我们引起注意?

体积和体积单位课件 篇2

体积单位间的进率(课本第34—35页内容)。

1、通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的 改写。

2、使学生学会用名数的改写解决一些简单的实际问题。

3、培养学生根据具体情况灵活应用不同的单位进行计算的能力。

1、学习体积单位间的进率。

(1)老师出示教材第34页例2:一个棱长为1dm的正方体,体积是1dm3。 想一想:它的体积是多少立方厘米?

(2)学生读题,理解题意。

(3)老师出示棱长为1dm的正方体模型。

提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)

(4)计算。

请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。 ②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。

老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3) 1dm3=1000cm3

(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)

(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。

(7)观察板书内容。

想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。

2、体积单位,面积单位,长度单位的比较。

(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。

(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。

单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。

3、学习体积单位名数的改写。

(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)

(2)学习教材第35页的例3。

(2)2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。 指名让学生说一说是怎样做的。

想:( ) cm3=1dm3 (3)学习教材第35页的例4。 出示例4,让学生先读题,理解题意:明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少? 学生独立思考,然后解答,指名板演。 V=abh=50×30×40=60000(cm3)=60(dm3)=0、06(m3)

【巩固练习】完成课本第35页的“做一做”第1、2题。学生完成后,要求他们口述解答的过程。第2题指名学生板演。

今天我们学习了哪些内容?你有什么收获?

体积和体积单位课件 篇3

教学目标:

1、了解并掌握体积单位间的进率。

2、理解并掌握体积高级单位与低级单位间的化和聚。

3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

重点难点:

体积单位间的进率和单位之间的互化

教学过程:

一、导入

1、同学们,我们学过哪些计量单位?它们相邻之间的进率是多少?,现在我们交流一下。

2、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、。

3、思考回答:你觉得他的整理如何?有什么需要补充的?如何进行单位间的互化?

4、猜想今天我们学习的相邻体积单位间的进率可能是多少?

二、自主探究、学习新知

(一)探究立方分米与立方厘米间的进率

1、指导学生分组进行探究,

①棱长1分米的正方体的体积是多少?

②棱长10厘米的正方体的体积是多少?

③1立方分米与1000立方厘米,哪个大?为什么?

2、课件提供

①教师提供1立方分米的正方体,一个标上棱长1分米,一个标上棱长10厘米,供学生观察。

②让学生可以观察分析,从而为得出结论提供感官上的支持。

3、交流学习结果,分组汇报

因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米1分米1分米=1立方分米

10厘米10厘米10厘米=1000立方厘米

所以:1立方分米=1000立方厘米

4、让学生在回顾一下思维的过程,再说说自己的理解。

a、一个棱长1分米的正方体,体积111=1立方分米,这个正方体的棱长也可以想成10厘米,体积101010=1000立方厘米,所以1立方分米=1000立方厘米。

b、1立方分米的正方体,每层有1010=100(个)1立方厘米的小正方体,10层有10010=1000(个),所以是1000立方厘米。

学生讨论:一个棱长1分米的正方体,体积111=1立方分米,这个正方体的棱长也可以想成10厘米,体积101010=1000立方厘米,所以1立方分米=1000立方厘米。

教师课件演示:1立方分米的教具,每层有1010=100(个)1立方厘米的小正方体,10层有10010=1000(个),所以是1000立方厘米。

(二)独立探究立方米与立方分米之间的进率

1、教师提问:立方米与立方分米之间的进率也是1000,用什么方法可以验证自己的想法是正确的呢?

教学1立方米=1000立方分米教学方法同上观察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么发现?(板书:每相邻两个体积单位间的进率是1000)

2、学生自己尝试解决问题

3、交流各自的思维过程

棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米10分米10分米=1000立方分米。

所以1立方米=1000立方分米(板书)

4、小结:相邻的两个体积单位之间的进率是1000。

5、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?

三、解决实际问题,巩固所学方法

1、教学例1:3.8立方米是多少立方厘米?

2400立方厘米是多少立方分米?

(1)学生尝试练习,在书上完成。

(2)交流方法:高级单位的数改写成低级单位的数,要乘进率,小数点向右移动对应的位数;低级单位的数 改写成高级单位的数,要除以进率,小数点要向左移动对应的位数。

2、完成47页做一做

学生独立作业时。提醒学生要认真审题。请学生说一说相邻两个面积单位的进率是多少。

四、全课总结

今天的学习中你有什么收获?学到了什么?

五、布置课堂作业

完成练习八2题、5题

体积和体积单位课件 篇4

教学目标

知识目标

使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解相邻的两个体积单位间的进率是1000的道理。

能力目标

能够采用对比的方法,记忆并区分长度单位、面积单位和体积单位。

情感目标

培养学生的学习迁移能力和探究能力,使学生会应用“猜想-验证”的方法解决数学问题。

重点

体积单位的进率。

难点

体积单位的进率的化聚。

教学过程

一、复习引入

1.填空:

①长方体体积=();

②正方体体积=()。

③常用的体积单位有()、()、();

师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

合作探究

二、课程内容

1.体积单位间的进率。

(1)出示:1个棱长是1分米的正方体木块。

图中是一个棱长为1分米的正方体,体积是1立方分米。想一想,它的体积是多少立方厘米呢?

提问:

①当正方体的棱长是1分米时,它的体积是多少?

②当正方体的棱长是10厘米时,它的体积是多少?

③而1分米是多少厘米?1立方分米等于多少立方厘米?

小组合作填表:

《体积单位间的进率》教学设计

小组汇报结论:1立方分米=1000立方厘米

同理得出:1立方米=1000立方分米

小结:相邻两个体积单位之间的进率都是1000。

(2)将长度单位、面积单位、体积单位加以比较:

先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?

(3)学习体积单位名数的改写。

思考:①怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

②怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?

出示例题3:3.8立方米是多少立方分米?2400立方厘米是多少立方分米?

写成如下形式:

3.8立方米=(3800)立方分米2400立方厘米=(2.4)立方分米

⒊出示例4:看见你得到哪些信息?

⑴这个包装箱的体积是多少?

V=50×30×40

=60000cm3

=60dm3

=0.06m3

⑵大家想一想,问题中没有要求我们最终用什么单位,你选择哪一个?为什么?

如果出现这样答,你必须选择那个答案?

答:这个牛奶包装箱的体积是m3。

⑶你还有其他的途径求出体积为0.06m3。先转化单位,再计算。

拓展应用

一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克?

总结

小结今天学习的内容。

作业布置

在具体的解决问题中,要根据题目的要求转化体积单位,还要注意已知条件单位之间的统一。

板书设计

体积单位间的进率

1立方分米=1000立方厘米

1立方米=1000立方分米

体积和体积单位课件 篇5

教学内容:

教科书第38~39页“体积和体积单位”。

教学目标:

1、使学生理解体积的概念,了解常用的体积单位:立方米、立方分米、立方厘米,对体积单位的大小形成比较明确的表象。

2、能正确区别长度单位、面积单位和体积单位的不同。

2.使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。

3.培养学生的比较、观察能力,扩展学生的思维,进一步发展学生的空间观念。

教学重点:

1、建立体积概念。

2、认识体积单位。

教学难点:

建立体积概念。

教学用具:

课件、1立方厘米、1立方分米的教具、1立方米的模型框架、一次性塑料杯、沙子、水、石块、木块、铁球、汽球。

教学过程:

一、故事引入,激发兴趣

同学们,大家还记得乌鸦喝水的故事吗?谁愿意看图给大家讲一讲。

问:乌鸦是怎么喝到水的?为什么把石子放时瓶子里,瓶子里的水就升上来了。

二、动手实验,引出概念

师:究竟是因为石块有重量,还是因为石块占了空间?咱们通过实验来看一看。

实验一:

出示有水的玻璃杯,在水面处做记号。在水杯中放入一块石头,在水面处做一个黄色记号。拿出石块后,再放入大一些的石块,在水面处做一个红色记号。

观察:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象?说明什么?

师小结:水杯中放入石块后,石块占据了空间,把水面向上挤。水面向上升,石块占据空间大,水面上升得高;石块小占据的空间小,水面上升得低。

实验二:

拿出装满细沙的石子,把细沙倒在一边,把一木块放入杯子里,再把倒出的沙装回杯子里,把杯子的沙倒出,把一些大的木块放入杯子里,再把倒出的沙装回杯子里。

观察思考:出现了什么结果?这说明什么?

师小结:放入小木块,外边剩的沙少;放入大木块,外边剩的沙多。这说明木块也占据杯子的空间。木块大占据空间大,木块小占据的空间小。

师:刚才同学们通过观察实验现象,通过分析思考发现石块、木块都占空间。在我们的生活中,有没有哪些现象也能说明物体占空间呢?

(学生演示吹气使塑料袋膨胀……)

最后师生共同概括出“体积”的含义。[板书]体所占空间的大小叫做物体的体积。

谁能说说什么是电视机的体积?什么是影碟机的体积?什么是手机的体积?它们谁的体积大?谁的体积小?

三、解决问题,引出单位

1、出示教材39页上的两个长方体,请学生比较。

刚才的电视机、影碟机、手机,大家可以直接通过观察得出它们的大小。对于这两个长方体,你们能比较出它们的'大小吗?

看来大家的意见各不相同。为什么前面几件物品你们一下子就能确定,而现在争来争去却不能确定呢?

也就是说需要有一个统一的标准!就像计量长度有长度单位,计量面积有面积单位,计量体积就需要有体积单位。我们学过长度单位用线段表示,面积单位用正方形来表示,你们猜想一下,体积单位应该用什么图形来表示呢?

对!体积单位是用正方体来表示的。常用的体积单位有立方厘米、立方分米、立方米。(板书)请你们猜一猜1cm3、1dm3,是多大的正方体?

学生讨论后回答:我们想棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3。

师:这个猜想对吗?看看书上是怎样说的。

学生看书,证实自己的猜想是对的。

师:请同学们在自己的学具中找出1cm3的正方体。

学生找到后,说一说自己是怎样找到的。

2、请你们找找生活中哪些物体的体积大约是1cm3。

请找出1dm3的正方体,与1cm3的正方体比较一下,看它的体积大多少,你能说出身边哪些物体的体积大约是1dm3吗?

1m3有多大?

你能想像出1m3有多大吗?这里有3根1米长的木条做成的一个互成直角的架子,我们把它放在墙角,看看1m3有多大,它和你想像的大小一样吗?

3、大家估计一下,它大约能容纳几个同学?验证

哪些物体计算体积时使用立方米比较恰当?

教师小结:常用的体积单位有立方厘米、立方分米和立方米。立方米是较大的体积单位,立方厘米是较小的体积单位。

4、p40做一做第1题。

师:我们知道了常用的体积单位,计量一个物体的体积,就要看这个物体含有多少个体积单位。

5、p40做一做第2题。说出它们的体积各是多少立方厘米。

四、巩固练习,形成能力

1、选择合适的体积单位填空。

一块橡皮的体积约是8( )

一台录音机的体积约是12( )

运货集装箱的体积约是40()

电冰箱的体积约是0.27()

数学课本的体积约是200()

2、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。()

3、摆一摆:用小正方体拼一个体积是8立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?

小结:同一个体积数,可以摆出不同的形状。

五、情感体验,本课小结

常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

体积单位的用途是什么?

板书设计:

体积

物体所占空间的大小叫做物体的体积。

长度单位:厘米、分米、米

面积单位:平方厘米、平方分米、平方米

体积单位:立方厘米、立方分米、立方米

体积和体积单位课件 篇6

知识与技能:使学生理解体积的概念,了解常见的体积单位,对体积单位的大小形成比较明确的表象。

过程与方法:培养学生的比较观察能力,拓展学生的思维,进一步发展学生的空间观念。

情感态度与价值观:让学生充分感受数学与现实生活的联系,体验数学知识在生活中处处都有。

教学重点:掌握体积和体积单位的知识,培养学生的动手能力。

教学难点:建立1立方厘米`1立方分米和1立方米的空间观念。

1.让学生讲《乌鸦喝水》的小故事。

2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的新课题《体积和体积单位》。(出示课题)

1、建立“体积”概念。

师出示实验一,“把小石块放入盛有水的烧杯中,你发现了什么?说明什么?”请生读题,分组操作。

师:通过这个实验,你发现了什么?为什么?[说明:物体 占空间]{板书}。

师再出示实验二,“把大小不同的两个石块分别放入盛有高度相同水的两个量杯中,你又发现了什么?说明什么?”请生读题,分组操作。

师:通过这个实验,你发现了什么?它们水面上升的高度相同吗?这说明什么?(大的物体占的空间大,小的物体占的空间小)。[说明:通过2个实验培养学生的小组学习、协作能力,锻炼学生的动手操作能力。]

师:观察这三个物体,哪个所占的空间比较大?哪个所占的空间比较小?

书包与讲桌相比,谁占的空间比较大?

生概括体积的定义:“物体所占空间的大小叫做物体的体积。”{板书}

生齐读。

师:桌上这三个物体,哪个体积最大?哪个体积最小?你知道体积比书包大的物体吗?你知道体积比火柴盒小的物体吗?[说明:体积的意义十分抽象,学生难以理解。这里的第一个实验,让学生通过观察、思考、认识物体“占有空间”。再通过第二个实验,让学生形成“空间有大小”的鲜明表象,帮助学生理解体积的含义,便于建立“体积”的概念。]

2、教学“体积单位”。

师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,学生发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]

师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包含有几个这样的小正方体,就能准确地比出它们的大小。

请生数一数,告诉老师谁的体积比较大?

学生汇报(注意让学生说出数的方法)。

师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。

请生读一读常用的体积单位有哪些。

出示自学要求,“自学课本112页内容。

自学体积单位。用看一看(是什么形 体)、量一量(它的棱长是多少)、摸一摸(它有多大)、说一说(它的定义)、找一找(在日常生活中哪些物体的体积可以用这个体积单位来计量)的方法,小组之间开展讨论和交流。”

请生分小组自学“体积单位”,进行讨论和交流。学生上台汇报自学成果。[说明:教师出示自学提纲,让学生以小组自学的形式开展讨论和交流,并让学生自我展示自学成果,极大地发挥了学生的主体意识和探究学习能力,发展学生的协作能力。]

师(小结)通过以上的学习,我们知道常用的体积单位有立方厘米、立方分米、立方米。并且知道1立方厘米、1立方分米、1立方米各有多大?

今后,我们在计量物体的体积时,就应根据实际情况来选用合适的体积单位

3.教学“计量体积单位”的方法。

师出示图。师:已知每个正方体的棱长是1厘米,它的体积是多少?这个长方体是由几个小正方体构成的?它含有多少个立方厘米?它的体积是多少?

请生说一说。

师(小结)计量一个物体的体积,要看这个物体含有多少个体积单位。

学生操作:

请你用4个1立方厘米的小正方体,摆成不同的长方体,它们的体积各是多少?还能摆成其它形状吗?它们的体积又是多少?[说明:这里的操作有两方面的作用:一是可以认识计量一个物体的体积,要看它含有多少个体积单位;二是可以通过摆小正方体看体积,为后面学习体积的计算做准备。]

( 哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?

[说明: 通过比较,有利于学生强化对长度、面积、和体积计量单位的认识,更好地构建认知结构]

转载请保留原文链接://www.djz525.com/a/6007128.html,并在标注文章来源。
上一篇 : 厨房的述职报告(汇集9篇)
下一篇 : 人事的工作总结9篇