数学教案。
关于“数学教案”,我特别为您精心准备了相关内容。我们所提供的方案仅供您参考,您可以根据实际情况进行适当调整。在给学生上课之前,老师应提前准备好教案课件,因此老师最好能认真编写每个教案课件。教案课件的完善工作,对于新教师尤为重要,必须认真对待。
数学教案 篇1
设计理念:
1、体现数学与生活的密切联系。在本节课的教学中,力求体现出新的课程理念,联系学生的生活实际来学习这些内容,整节课的教学从学生熟悉的事物出发,加强直观教学,在生活中学习新知、感悟计量单位,让孩子在生活中触摸数学。
2、改变学生的学习方式,提倡孩子主动探究学习,小组合作学习,让学生对这些常用的计量单位以及他们之间的进率进行梳理、归类,加深认识已经学过的量及相应的计量单位,认识这些计量单位间的联系和区别。
3、通过设计各个层次的练习活动,让每个学生都积极参与数学学习的过程,体验数学学习的快乐。
教学目标:
1、使学生加深认识已经学过的量及相应的计量单位,认识长度、面积和体积及其计量单位的联系和区别。
2、进一步体会计量单位的实际大小,加深理解各种量相邻计量单位之间进率的大小。
3、能正确地进行名数之间的改写,提高学生的思维能力,体验数学学习的快乐。
教学流程:
一、 欣赏日记,揭示课题
同学们,五一长假,六(1)班有个同学写了这样一篇日记,一起来欣赏一下(请一生朗读日记),听了这篇日记,你觉得文中出现较多的是什么?
对,里面有很多的量。比如:长度、面积、时间等等,其实,我们在日常生产、生活和科学研究中,都要接触各种量,进行各种量的计量,每种量都有它的计量单位。今天这节课,我们复习量的计量。(板书:量的计量单位)
[通过这个环节的教学,让学生体会生活中处处都有量,每天都在接触各种计量单位,新课的出示显得非常自然]
二、 检查自学结果,整理计量单位
1、师问:我们已经学过哪些量的计量?
2、 复习长度、面积和体积单位。
(1)、常用的长度单位有哪些?常用的面积单位有哪些?体积单位呢?
容积与体积有什么区别?容积单位有哪些,它与体积单位有什么联系?(学生回答后板书)
教师出示一根线段、1个1立方厘米、一个1立方分米的正方体、一个磁盘等实物,让学生观察思考:哪些是指长度,哪些是指面积?
(2)、猜一猜:(投影出示)
A、一个正方体的体积是1立方分米,它的棱长是多少?它的每个面的面积是多少?
B、用棱长是1厘米的小正方体木块堆成一个棱长是1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多少长?
(3) 复习进率。
让学生填写第118--119页长度、面积和体积的进率。
提问:你能发现长度、面积和体积相邻计量间的进率有什么特点吗?
学生回答后,老师就把这三句话推荐给大家:
每相邻两个长度单位之间的进率是10;
每相邻两个面积单位之间的进率是100;
每相邻两个体积单位之间的进率是1000。
师问:如果你是小老师,你要提醒同学们注意哪些计量单位之间的进率呢?(强调平方千米、公顷、平方米等单位间的进率)
练习口答:(投影出示)考考你:在( )里填上适当的计量单位的名称:
一枝铅笔长176( ), 一个篮球场占地420 ( )
一张课桌宽52 ( ), 一个火柴盒的体积是21( )
六(1)班教室的面积约是48 ( ),一种保温瓶的容量是2( )
4、复习质量单位
检查自学,同桌相互批改,反馈自学情况。
提问:你见过哪些物体的重量大约是1千克?称哪些物体重量一般要用克?请你观察:老师手里的一袋食用盐大约重多少?一袋味精呢?
你能举例说说生活中哪些物体的重量是1吨吗?
(象我们学校工地上的1袋水泥是50千克,那么20袋就是1吨)
5、复习时间单位及进率。
时间过得真快,上课至现在已经有十多分钟了,我们常用的时间单位还有哪些呢?请同学们交流汇报第119页上的内容。
师:看了这张表格,你还有什么问题要考考大家?(学生问:1个世纪有多少天?老师鼓励他们课后去计算一下)
脑筋急转弯:小明今年五年级啦,今年的2月份刚过了第3个生日,你知道他是几月几日出生的吗?他今年几岁呢?
你知道今年是闰年吗?为什么?如何判断平年还是闰年呢?
(3) 关于时间问题,老师也想考考你:完成练习二十五的第6题,反馈校正。
[这些计量单位的复习,老师充分发挥了学生学习的主动性,在自学思考的`基础上,让学生联系生活实际,说说计量单位,估算多少计量单位,在重点、难点处精心设计练习,同桌学习、小组探究,自学提问,学生学得兴趣盎然,较好地掌握了这些计量单位。]
6、复习名数的改写。
估算一下:教室黑板的长是多少(4米),宽呢?(1.20米)
象1.20米,就叫做名数,名数有单名数与复名数之分,请你分别写一个,同桌交流一下。
在实际计算中,我们要进行名数的改写,名数之间的改写要注意些什么?看书,在书上找到相关的句子。
完成书上的例题1。邀请同学上台进行讲解(强调解题的过程)
讲评时强调两点:一要注意:什么单位之间的改写。
二要注意:他们之间的进率是多少。
7、巩固练习:完成书上的做一做。
教师小结:这里的每组题有什么联系与区别?要注意些什么?
[名数的改写是一个难点,在学生尝试练习的基础上,教师让学生当小老师,上台讲解。旨在给学生独立思考的空间,让每个学生都积极参与到学习中来,在学生讲解的基础上,教师再强调注意点,改变了学习方式,培养了学生自学能力。]
四、综合练习,巩固知识
游戏练习:
1、在老师的材料袋里摸一张纸条,然后考考你的同学:
(1)、一张邮票的面积大约是8平方分米。( )
(2)、每年都是365天。( )
(3)、小明的身高约是1.56米,体重约是39克。( )
(4)、一个油桶的容积是20平方分米。( )
(5)、体积单位比面积单位大。( )
(6)、2.25时=2小时25分( )
2、投影出示:把左右两边相等的连一连:
4吨500千克 2时15分
4吨50千克 2时9分
4.05吨4 1/20 吨 2.15时 2 3/20时
4050千克 2 1/4 时
4500千克 215分
4 1/2 吨 135分
五、走进生活,拓展应用
同学们,今天我们学习了什么内容?你有哪些收获呢?下面我们一起来玩一玩,请你拿出自己带的实物,观察一下,用今天学到的数学知识向大家介绍一下你获得的信息。好吗 ?
[通过交流,让学生明白生活中到处有数学知识,较好地掌握了计量单位。学生在轻松愉快的氛围中巩固了新知。]
教后反思:
这是一节复习课,教学时我把目标定位于让学生在一定的生活情景中进行学习,而不是让他们死记硬背记计量单位及进率,这与新的课程标准强调教学过程应该让学生亲历,让他们经历深层思维的形成过程是相吻合的。主要有以下几个特点:
1、创生教材:教学时,教师一方面提供了大量的教具、实物,让学生对抽象的计量单位有一定的理解,同时,让学生自带实物进行学习,学生在平时吃的暑片、可乐等实物上见到了克、千克(g、kg)、升、毫升等计量单位,对新课的学习产生了浓厚的兴趣,同时也真正触摸了数学,拓展了课堂知识。
2、激活学生:课堂上,这些计量单位的复习是在学生自学反馈的基础上完成的,老师只是帮助梳理了一下,真正把学习的主动权交给了学生,学生学得非常轻松。教师是真正意义上的组织者、引导者。
3、评价激励:教学过程中的师生评价、小组评价、同桌评价等等,让学生经历了对生活经验的感悟过程和对数学知识的思考过程,在学生亲身感受的过程中,较好地实现了本课的情感目标。
数学教案 篇2
高二数学听课的方法为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
高二数学听课的方法1、课前预习能提高听课的针对性预习中发现的难点,就是听课的重点;
对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。2、听课过程中的科学首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;
上课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。其次就是听课要全神贯注。
全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。
心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。
手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
若能做到上述;五到;,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
3、特别注意老师讲课的开头和结尾。
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
高二数学的学习技巧一、抓好基础
数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。
二、制定好计划和奋斗目标
复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。
在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。
三、严防题海战术,克服盲目做题而不注重归纳的现象
做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。
因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。
高考数学答题方法1、函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;
5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
数学教案 篇3
教学目标:
同桌讨论,全班交流,说出判断的'根据。
师:小马虎感谢你们帮他解决了难题,他呀非常佩服大家的判断推理能力。说到判断推理,有一个人在这方面是非常了不起的。看!他是谁?(柯南)
给警察叔叔帮忙:
案发现场,从目击证人口中得知作案人是外省口音,年龄是40岁左右,男性,
通过排查找出了一些嫌疑人,这些是他们的身份证号码,你知道作案人是谁吗?
1、110105199311299155
2、420504196806052136
3、310245196902134521
4、332625196712203578
3.联系实际,开阔思维。
(1)了解身份证的用处
师:你们知道身份证主要有哪些用处吗?
(银行取款、邮政取款、坐飞机、贷款、住酒店、登机、贷款、开户、更改户籍资料等。 )
师:身份证能反映一个人的多种信息,所以一定要保管好,不要随便借给他人使用,同时今天课上的身份证号码也要注意保密。
师:身份证号码要表达的意思用文字能表达吗?既然可以,为什么还要用数字编码来表示呢?
(用数字能简洁明了的表示一大串信息,不会混淆。 )
师:这么几个简简单单的数字就可以反映出我为十多亿人的信息!可见用数字来反映信息是多么的简洁明了,这也就是数字编码的优越性。(板书:简洁)
(2)走进生活,了解其他编码的知识
师:刚才我们研究了身份证上的数字,其实呀,在现在这个高度发达的信息化的社会中,我们的生活中还有许多象身份证这样的数字编码,你能举个例子吗?
(邮政编码,银行帐号、电话号码、车辆号码……)(欣赏图片)
四、运用编码,设计编号。
1、师:同学们,你们想不想给自己来编一个学号呢?
(出示活动要求:1.这个学生编号反映哪些信息比较好?2.这些信息打算分别用什么?3.代码的顺序怎样编排?)
2、小组讨论:你们认为在编号时要注意些什么呢?(简洁方便,有规律,不能重复,唯一)号码上反映哪些信息比较好?(入学年份、班级、学号)
3、学生尝试独立编码。
4、作品展示
5、小结:大家真能干!在短短的时间里就编好了一个学号,而且反映出了这么多的信息,老师一定把你们的这些好建议、好方法转告给校长,让他来采纳大家的这些建议和方法,你们乐意吗?
五、课堂总结,引申探究。
师:通过本节课的学习,你有什么收获?
六、拓展延伸,课后调查。
活动内容:让学生利用课外时间调查收集一些邮政编码,了解邮政编码所反映的信息。
数学教案 篇4
活动名称:通关
活动目标:
1、引导幼儿感受图形品白的过程与构成
2、培养幼儿思维灵活性
活动准备:
自备教具:红黄蓝色的笔
场地布置:通关地形(每一个关卡由各拼板轮廓图)
配备教具:L型纸板若干、2拼版轮廓图若干、贝贝羊胖胖猪
活动过程;
一、情境表演,引起幼儿的兴趣
当当当有人敲门,看看是谁啊!(贝贝羊哭着入场)
贝贝羊你怎么了大灰狼把我的朋友胖胖猪抓走了,关在一个潮湿的小房子里,等胖胖猪在胖一些就要把它吃掉,小朋友快救救他吧好,我们可以帮忙,可是怎么帮呢
二、介绍游戏规则
大灰狼在小房子前设计了几道关卡,你们拿着这个通关钥匙(L型纸板),只要到每一个关卡拼对图形就能前进,最后就出小猪
幼儿手拿L型纸卡进行通关
幼儿从学具中找出相应颜色的L型泡棉卡,尝试拼第一组,按照拼好的图,给拼版轮廓图涂上与泡棉卡相同的颜色
教师观察幼儿并作个别指导,指导幼儿探索尝试第二组拼图
只要按拼板轮廓图拼对图形就可以前进,直到救到胖胖猪
数学教案 篇5
第一课时
教学内容:教科书第88~89页,例1、例2、练一练,练习十六第1~2题。
教学目标:1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推向”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学过程:
一、教学新课
1、教学例1。
(1)出示例1。如果把甲杯中的40毫升果汁倒入乙杯,这两杯果汁的数量分别会发生怎样的变化?进行操作演示。回顾操作过程,出示完整示意图。
(2)解决实际问题。把甲杯中的40毫升果汁倒入乙杯后,两个杯子的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?知道了现在每个杯子中的果汁数量,可以怎样求原来两个杯子中的果汁数量?可以用怎样的方法来解决?小组讨论。
(3)汇报方法。如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?
(4)。看来“再倒回去”是个好办法,用这个方法我们很容易就能想到原来两个杯子里各有多少毫升果汁。回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程把课本上的表格填写完整吗?边填边说每个数据各是怎样推算出来的。在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么优点?板书课题:解决问题的策略。
2、教学例2。
(1)理解题意,提出问题。用什么方法可以将题目的意思更清楚的表达出来?
(2)解决问题。
指出:可以按题意摘录条件进行。出示示意图。你能根据示意图说说题目的大意吗?你准备用什么策略来解决?你能仿照示意图的样四,表示出“倒过来推想”的过程吗?尝试画倒推的示意图。展示作业。根据示意图写出倒推后每一步的结果。你能列式解答吗?说说自己的想法。怎样才能知道我们推算出的结果是否正确呢?怎样验算?
(3)归纳。
解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?
3、完成练一练。
理解题意。尝试将题目中的条件,展示学生作业。你是怎样想的?你打算用什么样的策略角度解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种手法表示这样的意思吗?回列式解答吗?说说推想的'过程。
二、巩固练习
1、完成练习十六第1题。
你能通过列表的方法题目中的信息吗?你会列式解答吗?说说你是怎么想的?
2、完成第2题。
你能画图题目中各个条件的示意图吗?学生根据示意图列式解答。交流汇报,说说是怎样想的?
三、课堂
这节课你学会了什么?你有哪些收获和体会?
第二课时
教学内容:教科书第90~91页,练习十六第3~8题。
教学目标:1、通过练习,使学生进一步掌握用“倒过来推想”的策略解决问题的思路,感受所学解决问题策略的实际应用价值。
2、使学生在解决问题的过程中,进一步发展分析、综合和简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。
教学过程:
一、引入上节课
我们学习了什么内容?在解决问题时,可以应
用什么策略?板书课题:用“逆推法”的策略解决问题。
二、综合练习
1、完成练习十六第3题。
你能把题中的条件进行吗?可以运用什么策略解决呢?你能在图中标出其他几个景点和大门的位置吗?展示作业,说说自己的思路。
2、完成第4题。学生独立完成。汇报交流方法,你是怎样解决的?应该怎样倒过来想呢?
3、完成第5题。学生独立完成。汇报交流方法,说说你是怎么想的?怎样检验所填的数据是否正确?
4、完成第6题。读题,理解题意。下午6时的气温是18℃,根据比中午下降了7℃,你能推算出中午12时的气温吗?你是怎样推算上午8时是多少℃的?
5、完成第7题。理解每幅图中显示的相等关系:5个桃子的重量=2个梨子的重量3个梨子的重量=1个菠萝的重量1个菠萝重600克小组中交流思路。说说是怎样想的?
6、完成第8题。你能根据题中的条件进行吗?根据的条件列式解答。应该怎样倒过来推想呢?
三、课堂
通过今天的练习,你有什么收获?在生活中,在解决很多实际问题时,都可以运用“倒过来推想”的策略解决。
第三课时
教学内容:教科书第92页,练习十六第9、10题、思考题。
教学目标:1、使学生进一步掌握“倒过来推想”的策略解决实际问题,感受所学解决问题策略的实际应用价值。
2、使学生在解决问题的过程中,进一步发展分析、综合简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。
教学过程:
一、揭示课题板书课题:用“逆推法”的策略解决问题。
二、综合练习
1、完成练习十六第9题。
理解对帐单每一栏的含义。4月份的结单余额和上月比,是多了还是少了?你是怎么知道的?怎样可以算出张阿姨信用卡3月份的结单余额是多少元?小组讨论方法。汇报交流想法。
2、完成练习十六第10题。
要知道这四张牌原来是怎么放的,可以运用什么样的策略?(逆推法)根据第四幅图,你能知道第三幅图中的牌是什么顺序吗?(10、9、7、8)原来的牌是什么顺序呢?(7、9、10、8)分组活动:拿出四张牌,任意交换两次位置,再翻开看结果,猜猜原来四张牌是怎样放的。小组活动。
3、完成思考题。
理解题意及关键词的意思。“遇店加1倍”,遇到店将加成壶中酒的2倍。你能根据题意画出示意图吗?原有?斗→加1倍→喝1斗→加1倍→喝1斗→加1倍→喝1斗(喝完)逆推为:0→1斗→0.5斗→1.5斗→0.75斗→1.75斗→1.75斗→0.875斗
三、课堂
你觉得“逆推法”对于解决生活中的实际问题有什么作用?
数学教案 篇6
教学目标:
1、探索找两个数的公因数的方法,会用列举法找出两个数的公因数和公因数。
2、经历找两个数的公因数的过程,理解公因数和公因数的意义。
3、通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
教学重点:
1、会用列举法找出两个数的公因数和公因数。
2、经历找两个数的公因数的过程,理解公因数和公因数的意义。
教学难点:
用多种方法正确地找出两个数的公因数和公因数。
教学教法:
《新课程标准》指出:有效的教学活动不能单纯地依靠模仿与记忆。自主探索与合作交流是学习数学的重要方式,而本节课学生对因数已经有了初步的认识,在教法与学法上,可以让学生在半独立的状态下进行自主学习、交流探索。而教师在交流过程中,主要是引导、组织学生归纳找公因数的方法,让学生在经历体验、探索中去归纳、总结找公因数的方法。这也是体现学生的主体地位和教师的主导作用。
教学学法:
学法上,可以让学生在半独立的状态下进行自主学习、交流探索。而教师在交流过程中,主要是引导、组织学生归纳找公因数的方法,让学生在经历体验、探索中去归纳、总结找公因数的方法。这也较好的体现学生的主体地位和教师的主导作用。
教学过程:
一、复习导入,学习新知
因为学生已经学习过找出一个数的因数,因此先让学生找出4和6的因数,询问学生是怎样找的?并复习一个数的因数的特点。由此,进入新课。
1、师:同学们,12和18,你能很快找出它的因数吗?根据学生的回答,呈现在集合圈内。
2、师:仔细观察它们的因数,你有什么发现?学生会说,发现有相同的因数:1、2、3、6
师:那么准,那你们看看它们的因数你发现了什么?请大家找一找,在12和18的因数中有没有相同的因数?相同的因数有几个?
生同位交流,共同找出:1、2、3、6。
师:像这样即是12的因数,又是18的因数,我们就说这些数是12和18的公因数。此时师出示集合图形。
3、师:中间这一区域有什么特征?填的什么数?
生汇报:中间所填的数应该即是12的因数又是18的因数。
师:在这些公因数里面,哪个数?生:6。
师:对,6在这两个数的公因数里面是的,那么我们就说6是12和18的公因数。
师:这就是我们这节课要学习的内容——找公因数。
师板书课题:找公因数
4、师:让学生有自己的话说一说什么叫公因数,和公因数。在总结的基础上课件出示公因数的概念,并给时间让学生记忆。
5、师:想一想,我们刚才是怎样找到12和18的公因数的?由此总结出找两个数的公因数的方法。并板书出来。同时指出在找公因数时要注意什么。
(这一环节的设计,让学生探索找两个数的公因数的公因数的方法。并且能很快地找出来。同时这也就较好的达到了教学要求:让学生理解公因数和公因数。突出了教学重点:探索找两个数的公因数的方法。)
这一层次的设计我准备用时12分钟。
二、尝试练习,合作探究
在做书45页“练一练”中的1、2两题
(1)利用倍数关系找公因数
师:请大家把书翻到第三45页,独立完成第1小题。
8的因数有:1、2、4、8。
16的因数有:1、2、4、8、16。
8和16的公因数有:1、2、4、8。
8和16的公因数是:8
老师在做这道题目是可以直接写出最后的答案8?老师是不是有特异功能呢?师引导学生观察:8和16之间是什么关系?与它们的公因数有什么关系?
生汇报:16是18倍数,所以8和16的公因数是8。之后再及时出一些这方面的题练习,找4和8、9和3,28和7的公因数。从中,你发现了什么?
然后师放手给学生,鼓励学生自己小结;如果较大数是较小数的倍数,那么较小数就是这两个数的公因数。
(2)利用互质数关系找公因数
师:请大家独立完成第二题。
生汇报5的因数有:1、5。
7的因数有:1、7
5和7的公因数是:1
师同上一样引导学生独立观察5和7之间是什么关系?与他们的公因数有什么关系?
分小组讨论汇报。
生:5和7是质数,所以5和7的公因数是1。
练习:找2和3,11和19,3和7的公因数。并及时的进行总结:两个质数的公因数是1.
教材的练习到此结束,我又补充了找8和9的公因数?再练习,总结出:相邻的两个自然数(0除外)它们的公因数是1.
由于学生还不知道什么叫做互质关?我在此进行了一个小补充:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么他们的公因数只有1。这一安排,为他们今后的学习打下了坚实的基础。
(3)、整理找公因数的方法
师:今天我们学习了哪些方法找公因数?
生:列举法,用倍数关系找,用互质数关系找
师:我们在做题时要观察给出的数字的特征,运用不同的方法去找出它们的公因数。
(教师在讲解找公因数时,不仅要告诉学生具体的方法,更重要的是将这些单独的内容联系起来,给出学生统一的解题步骤,这样学生才有章可循。)
这一环节的设计我也准备用时15分钟。
三、以智力陷阱的形式巩固练习,让学生体验成功。
完成书第46页的3、4、5题。可以让学生独立完成,师巡视指导。在巡视的过程中对于后进生要特别的指导点拨。
巩固练习准备用时8分钟。
四、全课小结
用2分种对本节课的知识进行归纳总结。
五、作业设计
本节课,我设计了基本练习、提高练习和拓展练习,都以课件的形式呈现。较好的对本节课的知识进行了巩固和提高。
板书设计:
我本节课的板书设计力图全面而简明的将本课的内容传递给学生,便于学生理解和记忆。
找公因数
分别找因数
公因数
公因数
倍数关系→较小数
互质数、相邻数→1
各位评委老师,我仅从教材、教法、学法、及教学过程、板书设计等几个方面对本课进行说明。这只是我预设的一种方案,但是课堂千变万化的生成效果,最终还要和学生、课堂相结合。
说课的不足之处还请多多指教,我的说课到此结束,谢谢各位评委老师。
数学教案 篇7
教学目标:
【知识与技能】
1.使学生认识“>”“
2.会利用“>”“
【过程与方法】
通过纸条的高低不等和高低相等形象直观引入“>”“
【情感、态度与价值观】
培养学生初步判断、分析及处理问题的能力。
教学重点:
使学生认识“>”“
教学难点:
正确区分“”,建立初步的符号感。
教学媒体:
多媒体课件
教学过程:
一、情境引入
1.小朋友,开学至今大家都长高了不少,今天我们来比一比身高。谁愿意来比?(请两个小朋友)
大家看看,谁比谁高?谁比谁矮?
下面请小朋友三人一组,自由组合,两人比身高,另一人说说比的结果,互相轮流进行。
2.出示投影P18第一题
图上有谁啊?(小胖和小丁丁)(小强和小胖)(小亚和小巧)
谁来比一比他们的身高,说一说比的结果
(1)小丁丁比小胖矮,小胖比小丁丁高。
(2)小强和小胖一样高。
(3)小亚比小巧高,小巧比小亚矮。
二、新授
1.出示P18第2题第一张图
请小朋友说一说图意。
师并介绍小于号画小于号,开口的方向表示大,合拢的方向表示小。一起书空小于号。
师:一个单位的计算条比三个单位的计算条短,数学表达方式是1
念作1小于3。
用心爱心专心
谁来说?(多请几个)
练一练
摆计算条左边放2个,右边放5个,先互相说一说图意,然后写一写。
左边放1个,右边放4个,(独立完成,写一写)
2.左边放2个,右边放2个,问:现在是什么情况?
2和2相等也就是2等于2。等号两边开口一样,表示相等。一起书空等号,然后在书上写等号。
3.猜想一下接下来我们要学习哪个符号?可以猜想一下它的名字,也可以猜想一下它的形状。先独立思考,然后把你猜想的结果告诉你的同桌。
A:形状,上黑板画一画
B:名称
C:解释形状
D:说图意
师:大家讲得真好,正如大家想的,确实我们接下来要学习大于号,谁有什么好方法来记大于号?
一起书空大于号。
4.请学生观察三组算式,小组讨论,看有什么发现。学生回答后,教师用顺口溜帮助学生进行记忆:相同数间用等于;开口大,朝大数;尖头小,对小数。大于小于看左边,尖头小小是小于,开口大大是大于。
5.练一练:同桌合作摆学具,并写一写。
编一编,说一说
出示学具:○○●●●我们把它们看作是巧克力,你能编个故事吗?
(左边有2块巧克力,右边有3块巧克力)
2个单位的计算条比3个单位的计算条短,所以2小于3。
三、巩固练习
1.P18的第三题
2.P18的第四题的左边3列(要求独立完成)
3.比一比,赛一赛P18的第四题的右边3列
4.在()里填数。
用心爱心专心
5>(),3(),()3
5.发散思维练习
刚才我们学习了比大小,大家观察一下我们的教室,看一看哪些东西和哪些东西可以比的?谁和谁比?几大于几?
四、总结
用大于,小于和等于号可以比较数的大小,比较高矮,比较多少等。
作业设计:练习册P11习题集《比一比(2)》
板书设计:
小与,等于,大于
数学教案 篇8
学情分析
美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。
教学过程
一、复习旧知,铺垫孕伏
1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?
2.复习高的概念。
(1)什么叫圆锥的高?
(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)
评析:
圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。
二、创设情境,引发猜想
1. 电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2. 引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)
问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)
问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)
过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
评析:
数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。
三、自主探索,操作实验
下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
出示思考题:
(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2)你们的小组是怎样进行实验的?
1. 小组实验。
数学教案 篇9
教学思路:
通过观察、操作,能按照指定的目标或者自定的目标对物品进行分类,并会比较事物的多少、大小、高矮、长短、远近、宽窄、粗细、厚薄等。在分一分、比一比的活动中让学生形成初步的观察、分析比较能力。在教师的引导下,能在日常生活中发现并提出有关分类、比较的简单的数学问题,并能初步汇报和交流自己的想法。经历分类和比较的过程感受数学和生活的密切联系,初步养成分类整理物品的习惯。但是专门让孩子被动的认知让整个课堂很枯燥,孩子也没有兴趣。所以在设计本课的时候,我想采用一系列游戏的方式和方法让孩子在玩中学在学中玩,如《小组找家》《男女小朋友找家》《小小花果山》《美丽的大海边》,一环接一环,让孩子在新奇的时候就结束,意犹为尽,既调动了孩子的积极性又保证了孩子在玩中所学的知识。
教学目标:
1、通过观察、操作、能按照指定的标准或自定的标准对物品进行分类并会比较事物的大小多少轻重高矮长短远近宽窄粗细后薄等。
2、在分一分、比一比的活动中,让学生形成初步的观察、分析、比较能力。
3、在教师的指导下,能在日常生活中发现并提出有关分类、比较的简单数学问题。
4、经历分类、比较的过程中,感受数学与生活的密切联系,初步养成分类整理物品的习惯。
教材分析:
本单元教材选取学生习惯的生活环境场景为基本素材。通过帮妈妈整理衣服和存放衣服的活动,启发学生借助已有的生活经验,在动手实践与合作交流中学习分类和比较,把数学知识与学生生活实际联系起来。信息窗是帮妈妈分类放衣服,通过妈妈和小朋友的谈话启发学生利用经验,学习比较多少、大小、轻重、粗细、高矮等,在我学会了么栏目中比较远近宽窄,达到宽展巩固的目的。
学校学生情况分析:
学校处于城市,教室里设有多媒体,利用课件让学生投入这个学习活动中。学生在家也有一些生活经验,和教材的生活场景基本差不多,所以对于孩子的已有的生活经验对大小多少轻重高矮的分类不是太难。
数学教案 篇10
教学目标:
1、通过练习,进一步体验如何收集信息,如何分析统计表。
2、使学生在练习中,在收集、整理、分析、决策过程中相互交流、相互沟通、相互促进,掌握本单元内容。
教学重点:
体验统计过程,能用简单的方法收集和整理数据。
教学难点:
分析、提出合理化建议。
教学教法:
探究性实践作业。根据学生的实践作业进行分析、推理、判断,解决生活中的实际问题。
教学过程:
一、出示教学目标
1、通过练习,进一步体验如何收集信息,如何分析统计表。
2、使学生在练习中,在收集、整理、分析、决策过程中相互交流、相互沟通、相互促进,掌握本单元内容。
二、出示自学指导
完成教材“练习一”的第6题。
1、师:同学们,你们最喜欢吃的水果是什么?
调查本班同学最喜欢吃的水果情况,并将结果填入第6题表格内。
出示统计表。
提问:要完成这项统计,你准备怎么办?
2、引导学生找出一些易操作的方法:举手或组内报名,小组汇报等。并说出统计的过程:收集整理数据→填写表格→进行分析。
采用比较简便的方法,师生合作完成“收集整理数据”。(强调数据的准确性。)
3、从你的统计中,你发现了什么?有什么建议?
回答教材上的问题。
讨论:根据调查结果,说说买哪几种水果合理。
三、探究新知,自主探索
1、完成教材“练习一”的第4题。
(1)谈话:同学们,我们班谁的家里有车?(家里有车的同学举手,了解学生家里有车的情况。)
这么多同学家里有车,随着社会水平的提高,各种各样的车辆越来越多,你们看,几个同学正在统计一个路口10分钟内所通过的各种交通工具的数量。根据他们的记录结果,你知道道路上的面包车、大巴车、小轿车、摩托车各开过多少辆吗?
(2)小组内分工,分发记录单。
学生填写,汇报,教师展示。
种类 面包车 大巴车 小轿车 摩托车
辆数 6 8 33 12
(3)回答问题。
这个路口10分钟内通过的哪种车最多?哪种车最少?(小轿车最多,面包车最少。)
>>
如果再观察10分钟,哪种车通过的数量可能最多?(放手让学生讨论,说出理由。)
2、完成教材“练习一”的第5题。
出示统计表,要求学生根据统计表回答问题:每种书有多少?
回答问题(1)和(2)。
讨论:图书室要新买一批图书,你有什么建议?
四、当堂检测
完成教学“练习一”的第7题。
1、出示条形统计图。
读懂统计图。
图中1格代表( )份。
说说每天的销售情况。
2、哪天卖出的《电视报》的数量最多?哪天最少?(星期六最多,星期一最少)
3、你还能发现什么?你能提出什么建议?(学生自由发言。)
4、如果每格表示2份《电视报》,上面的数据应该怎么表示?
小组讨论,互相说说。
指名回答说出数据。
教师小结:如果数据比较大,用一格有时候能表示更大的量,因此,我们在读条形统计图时,先要读懂每格表示多少。
五、课堂小结
你觉得本节课有哪些收获?感觉自己表现得怎么样?
六、 抽查清
下面是本班同学喜欢的电视节目情况记录
动画片:12人 电视剧:10人 体育:9人 新闻:8人
把上面的数据记录下来并回答问题。
节目 动画片 体育 电视剧 新闻
人数
(1)喜欢( )电视节目的人数最多。
(2) 共调查了( )名同学。
种类 连环画 故事书 科技书 其他书
数量 20本 35本 45本 40本
(3)如果是你看电视,你会选什么节目?
下表是二(2)班图书角的藏书情况
(1)哪种书最多?
(2)图书角的藏书共有多少本?
(3)图书角要买一批新书,你有什么建议?
板书设计:
扩展阅读
高中数学教案
伴随着各行各业的衍生,我们会遇到许许多多的范文类型,范文在我们的生活中随处可见,值得参考的范文有哪些?以下为小编为你收集整理的高中数学教案,供大家参考,希望能帮助到有需要的朋友。
高中数学教案(篇1)
圆的方程
教学目标
(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.
(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.
(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.
(4)掌握直线和圆的位置关系,会求圆的切线.
(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.
教学建议
教材分析
(1)知识结构
(2)重点、难点分析
①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.
②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.
教法建议
(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.
(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.
(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.
(4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.
教学设计示例
圆的一般方程
教学目标:
(1)掌握圆的一般方程及其特点.
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
(3)能用待定系数法,由已知条件求出圆的一般方程.
(4)通过本节课学习,进一步掌握配方法和待定系数法.
教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
(2)用待定系数法求圆的方程.
教学难点:圆的一般方程特点的研究.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
前边已经学过了圆的标准方程
把它展开得
任何圆的方程都可以通过展开化成形如
①
的方程
【问题1】
形如①的方程的曲线是否都是圆?
师生共同讨论分析:
如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
②
显然②是不是圆方程与 是什么样的数密切相关,具体如下:
(1)当 时,②表示以 为圆心、以 为半径的圆;
(2)当 时,②表示一个点 ;
(3)当 时,②不表示任何曲线.
总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.
圆的一般方程的定义:
当 时,①表示以 为圆心、以 为半径的圆,
此时①称作圆的一般方程.
即称形如 的方程为圆的一般方程.
【问题2】圆的一般方程的特点,与圆的标准方程的异同.
(1) 和 的系数相同,都不为0.
(2)没有形如 的二次项.
圆的一般方程与一般的二元二次方程
③
相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.
圆的一般方程与圆的标准方程各有千秋:
(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.
(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.
【实例分析】
例1:下列方程各表示什么图形.
(1) ;
(2) ;
(3) .
学生演算并回答
(1)表示点(0,0);
(2)配方得 ,表示以 为圆心,3为半径的圆;
(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.
例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.
分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.
解:设圆的方程为
因为 、 、 三点在圆上,则有
解得: , ,
所求圆的方程为
可化为
圆心为 ,半径为5.
请同学们再用标准方程求解,比较两种解法的区别.
【概括总结】通过学生讨论,师生共同总结:
(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.
(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.
下面再看一个问题:
例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.
解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.
∵
∴
即
化简得
点 在曲线上,并且曲线为圆 内部的一段圆弧.
【练习巩固】
(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)
(2)求经过三点 、 、 的圆的方程.
分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .
(3)课本第79页练习1,2.
【小结】师生共同总结:
(1)圆的一般方程及其特点.
(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.
(3)用待定系数法求圆的方程.
【作业】课本第82页5,6,7,8.
高中数学教案(篇2)
【教学目标】
1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
【教学重难点】
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
【教学过程】
1.情景导入
教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2.展示目标、检查预习
3、合作探究、交流展示
(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?
(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
(2)棱柱的任何两个平面都可以作为棱柱的底面吗?
(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
(5)绕直角三角形某一边的几何体一定是圆锥吗?
5、典型例题
例1:判断下列语句是否正确。
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。
答案 A B
6、课堂检测:
课本P8,习题1.1 A组第1题。
7.归纳整理
由学生整理学习了哪些内容
【板书设计】
一、柱、锥、台、球的结构
二、例题
例1
变式1、2
【作业布置】
导学案课后练习与提高
1.1.1柱、锥、台、球的结构特征
课前预习学案
一、预习目标:
通过图形探究柱、锥、台、球的结构特征
二、预习内容:
阅读教材第2—6页内容,然后填空
(1)多面体的概念: 叫多面体,
叫多面体的面, 叫多面体的棱,
叫多面体的顶点。
① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱
②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥
③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。
(2)旋转体的概念: 叫旋转体, 叫旋转体的轴。
①圆柱: 所围成的几何体叫做圆柱
②圆锥: 所围成的几何体叫做圆锥
③圆台: 的部分叫圆台
④球的定义
思考:
(1)试分析多面体与旋转体有何去别
(2)球面球体有何去别
(3)圆与球有何去别
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
高中数学教案(篇3)
【教学目标】
1. 知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2.过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.
【设计思路】
1.教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.
2.学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
【教学过程】
一:创设情境,引入新课
1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数.
学生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.
二:观察归纳,形成定义
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)
三:举一反三,巩固定义
1.判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .
(设计意图:强化学生对等差数列“等差”特征的理解和应用).
2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四:利用定义,导出通项
1.已知等差数列:8,5,2,…,求第200项?
2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)
五:应用通项,解决问题
1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?
2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差数列 3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况.
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)
六:反馈练习:教材13页练习1
七:归纳总结:
1.一个定义:
等差数列的定义及定义表达式
2.一个公式:
等差数列的通项公式
3.二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.
高中数学教案(篇4)
教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.了解有限集、无限集、空集概念,
教学重点:集合概念、性质;“∈”,“?”的使用
教学难点:集合概念的理解;
课型:新授课
教学手段:
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学
“物以类聚,人以群分”数学中也有类似的分类。
如:自然数的集合0,1,2,3,……
如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…
集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…
2、元素与集合的关系
a是集合A的元素,就说a属于集合A,记作a∈A,
a不是集合A的元素,就说a不属于集合A,记作a?A
思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,
进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?
(1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母
(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数
(9)方程的实数解
评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
3、集合的中元素的三个特性:
1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合
3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
4、数的集简称数集,下面是一些常用数集及其记法:
非负整数集(即自然数集)记作:N有理数集Q
正整数集N_或N+实数集R
整数集Z
5、集合的分类原则:集合中所含元素的多少
①有限集含有限个元素,如A={-2,3}
②无限集含无限个元素,如自然数集N,有理数
③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ
三、课堂练习
1、用符合“∈”或“?”填空:课本P15练习惯1
2、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”
(1)所有在N中的元素都在N_中()
(2)所有在N中的元素都在Z中()
(3)所有不在N_中的数都不在Z中()
(4)所有不在Q中的实数都在R中()
(5)由既在R中又在N_中的数组成的集合中一定包含数0()
(6)不在N中的数不能使方程4x=8成立()
四、回顾反思
1、集合的概念
2、集合元素的三个特征
其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.
“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.
3、常见数集的专用符号.
五、作业布置
1.下列各组对象能确定一个集合吗?
(1)所有很大的实数
(2)好心的人
(3)1,2,2,3,4,5.
2.设a,b是非零实数,那么可能取的值组成集合的元素是
3.由实数x,-x,|x|,所组成的集合,最多含()
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
4.下列结论不正确的是()
a.O∈NB.QC.OQD.-1∈Z
5.下列结论中,不正确的是()
a.若a∈N,则-aNB.若a∈Z,则a2∈Z
C.若a∈Q,则|a|∈QD.若a∈R,则
6.求数集{1,x,x2-x}中的元素x应满足的条件;
高中数学教案(篇5)
教学目标
(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。
(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。
(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。
(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。
(5)进一步理解数形结合的思想方法。
教学建议
教材分析
(1)知识结构
曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。
(2)重点、难点分析
①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。
②本节的难点是曲线方程的概念和求曲线方程的方法。
教法建议
(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。
(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。
(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。
(4)从集合与对应的观点可以看得更清楚:
设 表示曲线 上适合某种条件的点 的集合;
表示二元方程的解对应的点的坐标的集合。
可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即
(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。
这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即
文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程
由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”
(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。
高中数学教案模板2022最新完整版 篇2
教学准备
1.教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依
赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的.重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示函数的定义域;
3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.
教学重点/难点
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学用具
多媒体
4.标签
函数及其表示
教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.
3、分析、归纳以上三个实例,它们有什么共同点;
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f(x)=+
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为x,且边长x为正数,所以0
所以s==(40-x)x(0
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
分析:
1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:
课本P18例2
(四)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.
(五)设置问题,留下悬念
1、课本P24习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.
课堂小结
高中数学教案模板2022最新完整版 篇3
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。
教学过程:
一、复习引入:
1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2、教材中的章头引言;
3、集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N_或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N_或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……
高中数学教案模板2022最新完整版 篇4
一、教学目标
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
高中数学教案模板2022最新完整版 篇5
1.课题
填写课题名称(高中代数类课题)
2.教学目标
(1)知识与技能:
通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;
(2)过程与方法:
通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;
(3)情感态度与价值观:
通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点
(1)教学重点:本节课的知识重点
(2)教学难点:易错点、难以理解的知识点
4.教学方法(一般从中选择3个就可以了)
(1)讨论法
(2)情景教学法
(3)问答法
(4)发现法
(5)讲授法
5.教学过程
(1)导入
简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)
(2)新授课程(一般分为三个小步骤)
①简单讲解本节课基础知识点(例:奇函数的定义)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。
(在新授课里面一定要表下出讲课的`大体流程,但是不必太过详细。)
(3)课堂小结
教师提问,学生回答本节课的收获。
(4)作业提高
布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书
2.高中数学教案格式
一.课题(说明本课名称)
二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)
三.课型(说明属新授课,还是复习课)
四.课时(说明属第几课时)
五.教学重点(说明本课所必须解决的关键性问题)
六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)
七.教学方法要根据学生实际,注重引导自学,注重启发思维
八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)
九.作业处理(说明如何布置书面或口头作业)
十.板书设计(说明上课时准备写在黑板上的内容)
十一.教具(或称教具准备,说明辅助教学手段使用的工具)
十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)
3.高中数学教案范文
【教学目标】
1.知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2.过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
高中数学教案(篇6)
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
高中数学教案模板范文 篇2
教学准备
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.
教学过程
等比数列性质请同学们类比得出.
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.
2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决.
【示范举例】
例1:
(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.
高中数学教案模板范文 篇3
1.1.1 任意角
教学目标
(一) 知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
(二) 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
(三) 情感与态度目标
1. 提高学生的推理能力;
2.培养学生应用意识. 教学重点
任意角概念的理解;区间角的集合的书写. 教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类: A
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度?
2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +
k·360° ,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z
⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.
例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β
4.课堂小结
①角的定义;
②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5;
②教材P5练习第1-5题;
③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,
解:??角属于第三象限,
? k·360°+180°
因此,2k·360°+360°
故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°
各是第几象限角?
当k为偶数时,令k=2n(n∈Z),则n·360°+90°
属于第二象限角
当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°
属于第四象限角
因此
属于第二或第四象限角.
1.1.2弧度制
(一)
教学目标
(二) 知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
(三) 过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
(四) 情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引 入:
由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定 义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳: 弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝对值|α|= .
4.角度与弧度之间的转换:
①将角度化为弧度:
②将弧度化为角度:
5.常规写法:
① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.
② 弧度与角度不能混用.
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.计算:
(1)sin4
(2)tan1.5.
8.课后作业:
①阅读教材P6 –P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
高中数学教案模板范文 篇4
一、教学目标
1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规
四、教学思路
(一)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本P16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本P17练习第5题
2.课外思考课本P16,探究(1)(2)
高中数学教案模板范文 篇5
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本P12练习1、2P18习题1.2A组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
高中数学教案(篇7)
【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案
2、有余力的学生可在完成探究案中的部分内容。
知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。
过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。
情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。
3. , ,那么 是否等于 呢?
=
从而得到两角差的余弦公式:
____________________________________
AB与PT关系如何?
从而得到两角差的余弦公式:
____________________________________
②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =
你的疑惑是什么?
________________________________________________________
______________________________________________________
例1. 利用差角余弦公式求 的值.
1、
高中数学教案(篇8)
教学目标
(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径。
(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化。
(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题。
(4)掌握直线和圆的位置关系,会求圆的切线。
(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法。
教学建议
教材分析
(1)知识结构
(2)重点、难点分析
①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题。
②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用。
教法建议
(1)圆是最简单的曲线。这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备。同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。因此教学中应加强练习,使学生确实掌握这一单元的知识和方法。
(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结。
(()3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识。
(4)有关圆的内容非常丰富,有很多有价值的问题。建议适当选择一些内容供学生研究。例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题。类似的还有圆系方程等问题。
教学设计示例
圆的一般方程
教学目标:
(1)掌握圆的一般方程及其特点。
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径。
(3)能用待定系数法,由已知条件求出圆的一般方程。
(4)通过本节课学习,进一步掌握配方法和待定系数法。
教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径。
(2)用待定系数法求圆的方程。
教学难点:圆的一般方程特点的研究。
教学用具:计算机。
教学方法:启发引导法,讨论法。
教学过程:
【引入】
前边已经学过了圆的标准方程
把它展开得
任何圆的方程都可以通过展开化成形如
①
的方程
【问题1】
形如①的方程的曲线是否都是圆?
师生共同讨论分析:
如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
②
显然②是不是圆方程与是什么样的数密切相关,具体如下:
(1)当时,②表示以为圆心、以为半径的圆;
(2)当时,②表示一个点;
(3)当时,②不表示任何曲线。
总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示。
圆的一般方程的定义:
当时,①表示以为圆心、以为半径的圆,
此时①称作圆的一般方程。
即称形如的方程为圆的一般方程。
【问题2】圆的一般方程的特点,与圆的标准方程的异同。
(1)和的系数相同,都不为0.
(2)没有形如的二次项。
圆的一般方程与一般的二元二次方程
③
相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件。
圆的一般方程与圆的标准方程各有千秋:
(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然。
(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用。
【实例分析】
例1:下列方程各表示什么图形。
(1) ;
(2) ;
一、教学内容分析
向量作为工具在数学、物理以及实际生活中都有着广泛的应用。
本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用。
二、教学目标设计
1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路。
2、了解构造法在解题中的运用。
三、教学重点及难点
重点:平面向量知识在各个领域中应用。
难点:向量的构造。
四、教学流程设计
五、教学过程设计
一、复习与回顾
1、提问:下列哪些量是向量?
(1)力(2)功(3)位移(4)力矩
2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[说明]复习数量积的有关知识。
二、学习新课
例1(书中例5)
向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看
例2(书中例3)
证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立。
证法(二)向量法
[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)
例3(书中例4)
[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明。
二、巩固练习
1、如图,某人在静水中游泳,速度为km/h.
(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?
答案:沿北偏东方向前进,实际速度大小是8 km/h.
(2)他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?
答案:朝北偏西方向前进,实际速度大小为km/h.
三、课堂小结
1、向量在物理、数学中有着广泛的应用。
2、要学会从不同的角度去看一个数学问题,是数学知识有机联系。
四、作业布置
1、书面作业:课本P73,练习8.4 4
高中数学教案(篇9)
教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方
面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所
反映的数学思想,在越来越广泛的领域种得到应用。
课 型:新授课
教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体
问题,感受集合语言的意义和作用;
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程:
一、 引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、 新课教学
(一)集合的有关概念
1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这
些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简
称集。
3. 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样
4. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A)
5. 常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N_或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
三、 归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
四、 引入课题
1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2
;(3)-1.5 R
2、 类比实数的大小关系,如5
布课题)
五、 新课教学
a={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:A?B(或B?A)
读作:A包含于(is contained in)B,或B包含(contains)A (一) 集合与集合之间的“包含”关系;
当集合A不包含于集合B时,记作
B
用Venn图表示两个集合间的“包含”关系 A?B(或B?A)
(二) 集合与集合之间的 “相等”关系;
a?B且B?A,则A=B中的元素是一样的,因此A=B
?A?B即 A=B?? B?A?
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合A?B,存在元素x∈B且x?A,则称集合A是集合B的真子集(proper subset)。
记作:A B(或B A)
读作:A真包含于B(或B真包含A)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:? 规定: 空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:1A?A ○2A?B,且B?C,则A?C ○
(六) 例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x≥5},并表示A、B的关系;
(七) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
1 已知集合A={x|a取值范围。
2 设集合A={○四边形},B={平行四边形},C={矩形},
D={正方形},试用Venn图表示它们之间的关系。
课题:§1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
六、 引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
七、 新课教学
1. 并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B
Venn图表示: 读作:“A并B” 即: A∪B={x|x∈A,或x∈B}
高中数学教案(篇10)
1.教学目标
(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.
(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2.教学重点.难点
(1)教学重点:圆的标准方程的求法及其应用.
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题.
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)
将x=2.7代入,得 .
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?
答:x2 y2=r2
2.如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为 ①
把①式两边平方,得(x―a)2 (y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在 ,半径为 ;
(3)经过点 ,圆心在点 .
2.根据圆的方程写出圆心和半径
(1) ; (2) .
ii.灵活应用(提升能力)
问题四:1.求以 为圆心,并且和直线 相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆.
2.已知圆的方程为 ,求过圆上一点 的切线方程.
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是 ,经过圆上一点 的切线的方程是: .
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.
3.求圆x2 y2=13过点(-2,3)的切线方程.
4.已知圆的方程为 ,求过点 的切线方程.
高中数学教案(篇11)
教学目标:
(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体
问题,感受集合语言的意义和作用;
教学重点:
集合的基本概念与表示方法。
教学难点:
运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:
一、引入课题
军训前学校通知:x月x日x点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.关于集合的元素的特征。
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样
4.元素与集合的关系。
(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)
5.常用数集及其记法。
非负整数集(或自然数集),记作N
正整数集,记作N__或N+;
整数集,记作Z。
有理数集,记作Q。
实数集,记作R。
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2}。
思考2,引入描述法。
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形}。
强调:描述法表示集合应注意集合的代表元素。
{(x,y)|y=x2+3x+2}与{y|y=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
三、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系。
教材分析:类比实数的大小关系引入集合的包含与相等关系。
数学扇形教案
随着生活水平的提高,我们经常会需要使用到一些范文,范文包含各种各样的文章,你可能正在找一些相关内容的范文,下面,小编为大家整理的“数学扇形教案”,欢迎分享给你的朋友!
数学扇形教案【篇1】
一、填空:
(1)2个是,里面有()个。
(3)比米短米是()米,米比()米长米。
(4)分数单位是的所有最简真分数的和是()。
(6)一个最简真分数,分子与分母相差2,它们的最小公倍数是63,这个分数是(),它与的差是().
(7)有三个分母是21的最简真分数,它们的和是,这三个真分数可能是()、()、()。
二、口算:
3、分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。()
5、一个最简分数,如果分母除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。()
1、下面各题计算正确的`是()。
A、B、C、
四、计算下面各题。
五、解方程。
六、用简便方法计算下面各题。
七、解决问题。
1、一根铁丝,第一次用去米,第二次用去米。
(1)两次共用去多少米?(2)第二次比第一次多用去多少米?
2、寒假中五(1)班同学读书情况如下表。
(1)读()本书的人数最多,读()本书的人数最少。
(2)读一本书和两本书的同学占全班人数的几分之几?
(3)读两本以上(含两本)的同学占全班人数的几分之几?
(4)全班同学都参加了读书活动吗?
3、小明看一本故事书,已经看了全书的,还剩下几分之几没有看?剩下的比已经看的多几分之几?
4、修一条路,第一天修了全长的,第二天修了全长的,第三天要把剩下的全修完。第三天修了全长的几分之几?
5、一个果园要种桃树、苹果树和梨树,其中种的桃树和梨树占总面积的,苹果树和梨树占总面积的。梨树的面积占总面积的几分之几?
6、某小学各年级学生人数情况如下:
一、二年级有300人,三、四年级有320人,五年级有200人,六年级有180人。
(1)算出一二年级、三四年级、五年级、六年级学生人数各占全校总人数的几分之几,填在表内。
(2)你还能提出什么数学问题?并解答出来。
7、小李身高米,小张比小李高米,小王又比小张高米,小王和小张的身高各是多少米?
数学扇形教案【篇2】
1.联系“六一活动”情境,综合运用比例尺、可能性等知识解决实际问题,培养学生综合应用知识解决问题的能力。
2.感受数学知识在现实生活中的价值,激发学生学习数学的兴趣。
教师:同学们,今年的“六一”节将是你们小学成长中的最后一个儿童节,你们想为自己的童年生活留下美好的回忆吗?有什么好的提议吗?
学生自由发表自己的想法,教师适时引导开展庆祝活动。
教师:刚才,有不少同学提到想搞庆祝活动,那么今天我们就来设计一个“六一庆祝活动方案”,行吗?
(1)研究需要筹备的活动。
教师:要进行活动方案的设计首先就要弄清楚需要作好哪些准备?安排哪些项目?
学生自由发表自己的想法,教师适时引导并梳理出相关内容。
①文艺表演节目――唱歌、跳舞、小品、游戏等;
②场地的安排和布置;
③抽奖活动;
④记录活动――照相。
(2)拟定活动安排时间表。
教师:我们首先应制作一个合理的时间表。根据同学们各自上报的节目及节目所需时间我们一同制作活动安排表。
教师:我们在活动的过程中由承担照相任务的同学为每个节目拍摄一张照片,并给每位表演者赠送一张照片,按照这样的方案算一算,如果每张照片0.5元,那么照相大致需要花多少钱?
学生根据之前统计的参与节目的人数进行独立的计算。集体汇报。
教师:活动中进行的抽奖活动,如果我们按一等奖20%,二等奖30%,三等奖50%的方案来设计。大家能想到哪些抽奖形式?
学生充分发表自己的看法。教师梳理出①摸彩球(红黄蓝各2个、3个、5个),②制作彩色转盘(红黄蓝各占20%,30%,50%)。
教师:我们的活动场地安排如果能够在纸上画出来的话那就更好了!能行吗?首先应确定平面图的什么?(强调比例尺应该合理)
教师引导:除活动场地外,我们再按同样的比例尺确定出观众席的位置范围,关于黑板的布置我们可以选用其他的比例尺来呈现。
将学生分两个大组,一组制作活动场地平面图,另一组制作黑板布置平面图。
教师:今天我们学习了什么?(扇形统计图)你有什么收获?
[关于六年级数学扇形统计图教案设计]
数学扇形教案【篇3】
1、众数: 一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。
众数能够反映一组数据的集中情况。
在一组数据中,众数可能不止一个,也可能没有众数。
(2)如果数据的个数是单数,那么最中间的那个数就是中位数;
(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
4、一组数据的一般水平:
(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。
(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。
(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。
一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
容易受极端数据的影响,表示一组数据的平均情况。
② 中位数:
将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
它不受极端数据的影响,表示一组数据的一般情况。
③ 众数:
在一组数据中出现次数最多的数叫做这组数据的众数。
它不受极端数据的影响,表示一组数据的集中情况。
折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。
一“点”(描点)、 二“连”(连线)、三“标”(标数据)。
②要用不同的线段分别连接两组数据中的数。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。
⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。
⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。
⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。
无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。
13÷99=0.1313…,这个商就是一个循环小数,它的循环节是13,方法二,可以用看余数的方法,来确定循环小数的循环节,例如,11÷9=1.……2,我们通过竖式计算可看出,数2重复出现,商就重复出现,那么循环节就是从,第一次出现余数2,所得的商2,所以我们可以用,看余数的方法,来确定循环节。
判断一个小数是否循环小数,其关键是首先判断这个小数是否无限小数,其次看这个小数 的小数部分是否有重复出现的数字,但是如何正确判断小数部分重复出现的数字,可根据以下几点进行判断
方法一:按照循环小数的意义来确定。即根据“一个无限小数,如果它的小数部分从某一位起,都是由一个或者几个数字依次不断地重复出现,这样的小数叫做循环小数。”这一意义来确定循环小数的循环节。
方法二:可以用看余数的方法来确定循环小数的循环节。例如:11÷9=1.……2。我们通过竖式计算可看出:余数“2”重复出现,商就重复出现,那么循环节就是从第一次出现余数“2”所得的商“2 ”。
数学扇形教案【篇4】
下面是范文网小编收集的小学六年级数学《扇形统计图》教案模板三篇(六年级画扇形统计图的步骤),供大家品鉴。
冀教版的教材根据学生的学习经验和知识基础,强化读统计图和统计意识的培养,淡化作图的要求。通过学生熟悉的典型事例,经历用扇形统计图有效地表示数据的过程。加强数学与现实生活的联系,培养学生的统计观念。下面就是小编给大家带来的小学六年级数学《扇形统计图》教案模板,欢迎大家阅读!
小学六年级数学《扇形统计图》教案模板一
教学内容:
教科书第67页例2,第68页课堂活动第2题及练习十五3~5题。
教学目标:
1.联系生活情境进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。
2.体会数据对决策的作用,体会统计在现实生活中的应用价值。
教学重点:
进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。
教学难点:
会根据扇形统计图前后的变化进行对比分析。
教学准备:
教具:多媒体课件。
教学过程:
一、复习引入
教师:扇形统计图有什么特点呢?
教师:今天我们将在以前学习知识的基础上来进一步研究扇形统计图。
板书课题:扇形统计图
二、自主探索,学习新知
1.教学例2
(1)先后出示两个统计图。
先出示第一幅扇形统计图。
教师:从这幅图中我们能获得哪些信息?
根据学生的回答在课件中点出相关部分。
教师:这些都是什么时候的数据?
再出示第二幅扇形统计图。
教师:从这幅图中我们又能获得哪些信息?这些又是什么时候的数据?
教师:耕地、森林、果园的面积各是多少平方千米呢?没有改造的荒山还有多少平方千米?请你们算一算。
将两幅图放在一块观察。
教师:看了这两幅扇形统计图,你想说些什么?看看谁的发现最多,最有价值。
学生先独立思考,然后小组内部交流自己的发现(“退耕还林”前与2006年底相比土地的变化情况)。
(2)进一步了解扇形统计图的作用。
教师:刚才同学们在小组内部互相交流了自己的发现,现在哪位同学能代表你们小组进行发言?
请一两位同学相互补充,找到统计图中发生变化的项目。
小结:对比两幅扇形统计图,同学们强调最多的是有许多项目发生了变化。有没有没发生变化的量呢?(课件重点强调:土地总面积没发生改变)也就是两个圆所代表的都是靠山村的土地总面积。
教师引导:结合我们的发现思考:森林面积的增加与荒山面积的减少会给这个村庄带来怎样的变化?如果你是村委会的领导面对2006年底的统计图你又会作哪些思考?
(3)根据扇形统计图解决问题。
教师:观察扇形统计图,你还能提出并解决哪些数学问题?
学生先独立思考并解答,教师巡视找出典型的问题并进行解析。
2.课堂总结
教师:今天我们学习了什么?(扇形统计图)你又有什么收获?
三、课堂活动
教师:刚才我们分析的两个扇形统计图的圆都代表相同的含义——土地总面积,(课件点出“课堂活动”第2题——改变题目增加两个参数——美国、俄罗斯的面积和人口)现在呢?
教师:仔细观察这些统计图,你有哪些发现?
教师引导:重点分析中国人口多耕地少的基本国情。
教师:面对我国人口多耕地少的局面,你会做哪些思考?
四、练习应用,促进发展
1.完成练习十五第3题
出示题中的两幅扇形统计图,引导学生对比。
(1)从两幅统计图中,你获得了哪些信息?
(2)算一算:从1996年到2006年,工业用地、居住用地、绿化用地分别增加或减少了多少平方千米?
学生独立计算,教师巡视,抽几个学生上台板演,集体评议。
(3)议一议:你对这种变化有什么看法?
2.完成练习十五第4,5题
小学六年级数学《扇形统计图》教案模板二
教学内容:
扇形统计图
教材第68—69页的内容。
教学目标:
了解扇形统计图的特点、意义、作用;会看扇形统计图,会制作扇形统计图,会分析。
重点难点:
会制扇形统计图,会分析。
教具准备:
课件。
教学过程:
一、什么是扇形统计图
(是用整个图表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数)
例如:下图的扇形统计图反映了某班学生在课外活动中参加各种小组的情况。
问:在这个统计图中,用整个圆表示什么?(全班人数)
从图中可以看出什么?
(参加文娱小组的学生占全班人数的30%;参加体育小组的学生占全班人数的60%,参加美术小组的人数占全班人数的10%)
量一量:用量角器量一量图中每个扇形的圆心角的度数?
想一想:扇形统计表的特点?(可以很清楚地表示出各部分数量同总数之间的关系)
二、如何制作扇形统计图
例5 和桥村2000年各种农作物的种植面积如下
粮食作物 84公顷
棉花 24公顷
油料作物 12公顷
根据以上数据,制成扇形统计图,
制图步骤
(1)先算出各部分数量占总数最的百分之几。
(2)再算出表示各部分数量的扇形的圆心角度数。
(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同的颜色或条纹把各个扇形区别开。
(5)名称、单位、制表时间,
板书:(1)84+24+12=120(公顷)
粮食作物:84÷120=70%
棉花:24÷120=20%
油粮作物:12÷120=10%
(2)粮食作物:360°x 70%=252°
棉花:360°x20%=72°
油料作物:360°x10%=36°
和桥村2000年各种农作物种植面积统计图
2001年1月制
三、课堂作业
设计
1.李明问班上的每个同学:“你最喜欢哪—项球类活动?”根据同学们的回答,他制成了右面的扇形统计图。请你看图回答下面的问题
(1)哪项球类活动欢迎?
(2)哪两项球类活动受欢迎的程度差不多?
(3)最爱好哪项球类活动的同学大约占总人数的
(4)图中的“其他”,是把最爱好排球、网球、手球等球类活动的人数合并而成的,你认为这样做合理吗?
五年级一班上学期期末的音乐成绩,得优的有12人,得良的有16人,及格的有10人,不及格的有2人。各占全班人数的百分之几?制成扇形统计图。
3.右图是一个养禽专业户去年养的鸡、鸭、鹅的扇形统计图。如果这个养禽专业户共养鸡、鸭、鹅共2500只,算出三种家禽各养多少只。
4.一种牛肉的成份如下表。根据表中的数据,制成扇形统计图。
四、课堂作业
设计
1.(1)乒乓球;(2)足球篮球;(3)羽毛球;(4)合理;
2.略
3.鹅:2500x 18%=450(只)
鸭:2500x 30%=750(只);
鸡:2500x52%二1300(只)
小学六年级数学《扇形统计图》教案模板三
教学内容:
冀教版《数学》六年级上册第84、85页。
教学目标:
1.经历读统计图、交流信息、讨论图的特征等认识扇形统计图的过程。
2.了解扇形统计图的特征,能解释扇形统计图中的数据,能根据统计图回答有关问题。
3.体会扇形统计图在描述和交流数据中的作用,激发学习新知识的兴趣。
教学过程:
一、问题情境
天我们来学习一种新的统计图《扇形统计图》,说到统计图我们还学过哪些统计图,它们都有哪些特点?(学生自由说)那么我们今天要学习的扇形统计图又有什么特点呢?和他们有什么不同呢/ 二、认识扇形图
1.让学生看课件中的扇形统计图。(或课本84页)
师:,书上有其他学校六⑴班40名同学四个方面调查结果的扇形统计图。自己读一读。自由说一说你得到了哪些数学信息
2.交流得到的信息。
3.仔细观察统计图,你能用已知的数学信息,提出哪些有用的数学问题呢?(先独立思考,然后小组交流)教师巡视,派代表分别展示出小组交流的结果。
小组展示提出的问题,让对抗组来解答。通过补充质疑同学们基本能把有价值的数学问题挖出来。
注:学生提出的问题基本都是针对每一个统计图中的问题。
4.同学们真是善于观察,善于思考,提出了这么多有价值的数学问题,那么同学们再观察一下这四个统计图有什么共同的特点呢?
生1:它们都是一个圆,这个圆表示一个整体,也就是六一班的全体学生
生2:每个圆都分成了大小不同的扇形,这些扇形表示的是部分。
生3:每个扇形占整个圆的多少都是用百分比表示出来的。
生4:圆中每个扇形的百分比相加的和都是100%
5.同学们说的真好,把最关键的问题都给说出来了。我们说了这么多那同学们现在知道什么是扇形统计图了吗?
试着总结:(可以小组交流一下再说)用圆来表示一个整体,用扇形表示其中的一部分,用百分比来表示部分占整体的多少的统计图叫做扇形统计图。(板书)
6.扇形统计图有什么特点呢?
生:扇形统计图可以很清楚地表示部分和整体之间的关系。师补充:但是呢它也有不足,它不能表示每一部分数量的多少!
7.设情境:让学生选择合适的统计图
(1)想知道奥城小学每个年级的学生人数应该用()统计图。
(2)想知道奥城小学每个年级的学生人数的增减情况用()统计图
(3)想知道每个年级的人数占全校的多少应该用()
总结:所以我们要根据不同的需要采用不同的统计图
二、堂清练习
用多媒体展示三个层次的问题,让学生,独立思考汇报,然后全班交流
学生可能会说出很多不同的问题,在这里注重学法的指导。
三、总结概括,拓展应用。
同学们,这节课我们主要学习了什么?你有什么收获?
统计在我们生活中的应用非常广泛,例如我们可以调查一下我们班60个人的完成作业情况制成统计图,还可以调查一下我们班的同学在家是否主动做家务制成统计图等等,只要我们善于观察,留心生活就能把我们学过的很多数学知识运用到我们的实际生活当中去,都能成为一个小小的数学家!
数学扇形教案【篇5】
教学目标:
1、使学生掌握整十数加一位数和相应减法的口算过程。
2、会口算整十数加一位数和相应的减法。
过程与方法:
引导学生参与学习活动,经历整十数加一位数和相应减法的计算方法的的探索过程。
情感、态度与价值观:
培养学生参与数学活动的积极性和仔细认真的良好学习习惯。 学习方式:动手操作、小组合作、交流研讨 教学准备:课件或挂图、小棒、教学图片。
1、 口头完成教师出示的有关数的组成习题。
教师谈话引入,创设情境:蓝灵鼠是我们学习的好伙伴,今天他又走进了我们的课堂,和我们一起摆小棒。大家看他是怎么摆的?课件出示与教材图相似的小棒图(先出示30根小棒,再出示5根小棒)现在,你也像蓝灵鼠那样自己摆小棒。
引导学生说一说是怎么摆的。 设计学生喜欢的活动,激发学生学习的积极性,培养学生学习的兴趣。
1、仔细观察,说出图意,提问并解答。左边摆了30根小棒,右边摆了5根小棒,一共摆了多少根小棒?列式是30+5=35
2、学生按教师要求和同桌举例认识加数、加数、和。
3、学生按图进行操作、交流、表达,然后汇报交流。
4、举例认识被减数、减数、差。
教师提问:根据你的操作,能提出什么问题?怎样列式解答?先组内说,再汇报。
教师讲解加数、加数、和。让学生重复这些内容,举例说说。
回到情景图,教师边演示边提问,还剩多少根?怎样列式计算?你是怎样想的?交给学生讨论 。要求学生说出自己的算理。
讲解被减数、减数、差。方法同上。 教师放手学生自学,给他们充足的时间和空间操作、讨论、汇报。在相信学生能力的前提下,激发学生热爱学习的情感。
学生按要求完成练习。
完成练一练的1、2、3题(可采用多种形式练习)第2题,要求学生看图说题意,并列式计算。
第4题 对口练习:可采用教师和一名学生先做示范(可加、可减)再让同桌进行练习。
采取灵活多样的形式进行练习,激发学生学习的兴趣,使学生永远保持旺盛的精力来参与学习活动。
1、经历探索整十数加、减整十数计算方法的过程,并掌握计算方法。
2、在教师和同伴的鼓励下,能积极克服数学活动中遇到的困难,发展初步的语言表达能力和与人合作、交流的意识,感受数学与生活的联系。
1、谈话:今天,老师给你们带来了礼物,看!(出示实物糖球,左手三串,右手两串)。
2、教师举起左手的糖球,提问:老师左手拿着多少个糖球,你是怎么知道的?右手呢?
小结:一串糖球有10个,三串糖球就是3个十,是30,两串糖球是2个十,是20。
(学生可能会提:一共有多少个糖球?左手比右手多多少个?右手比左手少多少个?)
求一共有多少个糖球用什么方法计算?怎么列式?
可以用学具摆一摆,可以结合以前学过的知识来想一想,也可以和周围的同学讨论,然后说给全班同学听。
小组内讨论后,组长汇报讨论结果,教师板书算式的得数。
(学生可能会说3个十加2个十得5个十,5个十是50也可能会说因为3+2=5,所以30+20=50。)
谈话:我们学习了整十数加整十数,(板书课题)同学们的算法都很好,我们的好朋友也来了,看看他们是怎么算的?
小萝卜:我是十个十个地数,30,在数两个十,是40,50。
小结:我们的好朋友算得和大家都一样,在以后的计算中,你喜欢用哪种方法算就用哪种方法算。
2、教学“试一试”。
提问:刚才,我们提的那个问题可以用减法来计算?你会列式计算吗?
教师根据学生的回答板书;30-20=10。
提问:计算时你是怎样想的?谁愿意说给大家听。(学生可能会说因为3-2=1,所以30-20=10;也可能说3个十减2个十是1个,就是10。)
小结:同学们自己动脑思考并与同学合作,学会了一些整十数加、减整十数的计算方法,以后做题时你喜欢用哪种方法就用哪种。
1、“想想做做”第1题。
学生独立列式计算,说说每道算式的意思以及计算时是怎样想的。
2、“想想做做”第2题。
出示第一组、第二组题让学生按组计算。
出示第三组的第1题,让学生自己写出相应的第2题。
让学生自己出一组这样的题并进行计算。全班交流自己的出题情况。
3、“想想做做”第4题。
谈话:请大家把书翻到第5页,看第4题,小鸭子20+20找到了它的妈妈40,其他小鸭子找不到妈妈了,你能帮助它们找到自己的妈妈吗?在书上画线连一连,连好后同桌同学互相检查。
4、“想想做做”第5题。
谈话:请看第5题,我们来做开火车的游戏。仔细看图,你知道火车怎么开吗,说给大家听听。学生在方框里填数后,一人报得数,全班学生一起订正。
5、课堂作业。
这节课同学们积极思考,并与小伙伴讨论,学到了很多知识,你有哪些收获?说给大家听听。
教学目标:
1. 经历探索两位数加一位数和整数计算方法的过程,学生初步学会两位数加一位数进位加法的口算方法,理解算理,能够正确地进行口算。
2. 感受进位加法与实际生活的紧密联系,体会进位加法在生活中的作用。
教学重点:
学生掌握两位数加一位数进位加法的口算方法。
教学难点:
经历探索两位数加一位数进位加法的计算过程。
1、口算。
(1)上面哪几道题先算几加几?
1、谈话引入,示联欢会场景图。
2、看图了解信息和要解决的问题。
3、小组讨论解决问题的方法,列式。
4、讨论先算什么,再算什么,小组合作摆小棒。
5、分组介绍计算方法,集体评价。
6、做一做,同桌任选一道合作摆小棒,说一说计算方法。
7、指名说一说怎样计算的。
【小结】师生小结两位数加一位数(进位加)计算方法:进行两位数加一位数进位加法的计算,可以先算几加几,加的得数和原来的整十数相加;也可以先把两位数凑成整十数,再加余下的数。
1、 独立完成练习十五的第5题,(学生同桌说一说发现)。
2、 独立完成练习十五的第6题,集体订正。
3、小医生,把错的改正过来,说一说错在哪里。
14→□ →□→□→□→□
2、数学乐园。
从10、20、30、40、50、60、70、80中,写出和相等的一组算式。
□+□=□+□
□+□=□+□
1、26+8 = 5+37 =
再算( )加( )等于( )。 再算( )加( )等于( )。
2、在正确得数的( )里打“√”。
35+9={34 44() 49( )}
6+27={87() 43() 33( )}
7+53={60() 50() 75( )}
3.计算。
40+30= 6+82= 76+6= 56+4=
47+2= 69-40= 82-10= 30+4 =
32+9= 57+7= 9+71= 80-30 =
教学目标:
1、通过直观,使学生在理解算理的基础上掌握两位数减一位数和整十数的口算方法。
2、通过人人参与口算方法的指导过程,培养学生的观察能力、口头表达能力以及推理归纳能力。培养学生的发散思维能力。
3、通过分组学习,培养学生的合作精神及主动探索知识的精神。
1、师:同学们,今天我们班来了同学们非常熟悉的朋友,你们想知道是谁吗?(挂图出示喜羊羊和灰太狼)他们想和同学们比一比,看谁聪明。有信心战胜喜羊羊和灰太狼吗?
2、那同学们可要做好准备,看看它们出了哪些什么的问题:
同学们真的很聪明哦,闯过了喜羊羊的第一关。
五一期间,喜羊羊的玩具店开张了,懒羊羊也来到了玩具店,想买一件自己喜欢的玩具,(出示玩具)可是懒羊羊在买玩具时却遇到了问题。(出示喜羊羊说的话,生自由读一读)你们能不能帮助他?那么该怎样列式呢?(学生说算式教师板书算式)
1、这道题你会算吗?应该怎样算呢?先自己想一想,然后把你的想法给小组里的同学说一说。大家可以用小棒摆一摆。(学生分组讨论,师参与讨论)
2、汇报交流算法。
3、同学们真聪明,也非常的有爱心,用自己的学具帮助懒羊羊解决了问题,自己还学会了两位数减一位数的计算方法,真不简单。
57-3= 99-6= 89-7=
65-4= 48-5= 26-2=
5、美羊羊也遇到了难题,你们还愿意帮助她吗?该怎样列式呢?
6、这道题怎样计算呢?在小组里讨论一下。
7、汇报交流算法。
30-10= 50-20= 76-40=
38-10= 57-20= 95-70=
1、小结:刚才大家用自己的方法解决了懒羊羊遇到的问题,大家比较一下, 35-2=33,35-20=15这两题一样吗?(生:不一样。)它们在计算方法上有什么相同点和不同点?(都是把35分解成30和5,减一位数从个位上减,减整十数从十位上减。)
1、同学们你们真的很聪明,那就请同学们用所学的知识帮助老师解决一个实际问题好吗?
前两天,我去逛书店,看到了一本自己非常喜欢的书,价格是26元,可是我只带了10元钱,同学们知道我遇到什么难题了吗?谁能帮我解决这个难题呢?你是怎么知道的?
谢谢你,明天我就再带上16元钱去买这本书。
你们凭着自己的聪明才智不但战胜了喜羊羊,而且还帮老师解决了问题,真是令人佩服!
2、玩“爬楼梯夺智慧星”的游戏。
教师任选两组学生进行比赛,根据口令同时接力做题,先做完的小组拔智慧星。
(先选出一名学生当主裁判,其余学生当副裁判,然后请参加比赛的两组同学做好准备,按要求进行比赛。最后由主裁判带着大家集体订正,评议)
这节课你们表现的这么出色,学得又都很认真,肯定有不少收获吧!能把你的收获说给大家听听吗?
数学梯形教案
随着写作规范的不断完善,我们会看到各种各样的范文,范文包含各种各样的文章,什么样的范文比较高质量?小编收集并整理了“数学梯形教案”,大家不妨来参考。希望你能喜欢!
数学梯形教案 篇1
一、活动目标:
1、初步理解梯形的特征,并能不受其他图形的干扰在各种图形中找出梯形。
2、认识不同的梯形,发展幼儿的观察、比较、动手能力。
3、诱发孩子们学习图形的兴趣。
二、重点和难点:
重点:初步了解梯形的。特征。
难点:认识不同的梯形。
三、活动准备:
环境创设:活动室内放一些包含梯形的图画。
教师演示用具:正方形娃娃、长方形娃娃、梯形娃娃。
幼儿学具:包含有梯形的的图画若干张(没涂色)。
四、活动过程:
1、通过寻找、涂色活动让幼儿初步感知梯形的特征。
让幼儿找出图中不是长方形、正方形的图形并涂上颜色。
2、观察了解梯形特征。
(1)出示梯形,提问:这个图形有几条边?几个角?你们看,它上面的边短,下面的边长,上下两条边平平的,旁边两条边斜斜的。这个图形像什么?
(2)小结:这个像滑梯的图形,名叫——梯形。
(3)不过,梯形宝宝可调皮呢,它一会儿翻跟头,一会儿躺下睡觉,你们看这样还是梯形吗?(小结:原来梯形可以倒着放,睡着放,它们都是梯形。)
(4)分别出示直角梯形、等腰梯形,让幼儿了解它们也是梯形。
提问:这个一边可以当滑梯的图形,是不是梯形?这个两边有一样长滑梯的图形,是不是梯形?
3、通过再一次的操作活动让幼儿巩固了解梯形的基本特征。
(1)来了一些小客人,他们说肚子饿了,想吃梯形饼干,小朋友能帮助他们吗?
(2)先请小朋友们从各种形状的饼干中挑选出1块梯形饼干,举起来给老师检验。
(3)再选择2块不同的梯形饼干,给同伴检验后喂小客人,并对小客人说:“请吃梯形饼干”。(教师在旁注意检验)
4、通过寻找生活中常见事物中的梯形,加深对梯形特征的认识。
(1)让幼儿在活动室周围张贴的图片中,寻找梯形宝宝,先请一名幼儿找找、说说。
(2)鼓励全体幼儿寻找梯形,跟同伴和客人老师说说梯形宝宝藏在哪里。
数学梯形教案 篇2
教学目标:
1、使学生发现梯形面积公式的推导方法,理解公式的形成,并能运用公式解决简单的实际问题,发展实践能力。
2、通过对面积公式的探索,培养学生观察比较、动手操作的能力,发展空间观念。
3、结合教学内容,渗透“转化”的教学,培养学生初步的创新思维能力。
教学重点:
发现、理解和应用梯形面积计算公式。
教具准备:
计算机软、硬件一套;两个完全一样的直角梯形拼成的长方形;两个完全一样的梯形拼成的平行四边形;标有上、下底和高及数据的一般梯形、等腰梯形、直角梯形各一个。
学具准备:
每个学生准备两个完全一样的一般梯形、直角梯形、等腰梯形和剪刀。
1、启发学生回忆三角形的面积推导公式。
2、板书课题,引入新课。
学生分成四人小组进行学习。
独立拿出准备好的各种梯形,拼成学过的图形。
学生拼摆,教师对不同层次的学生,及时给予点拨和鼓励。
学生分组,结合拼成的平行四边形观察、讨论。教师巡视,注意点拨。
学生分组讨论,教师巡视,注意点拨。
学生反馈,教师注意用规范的语言进行调控。
数学梯形教案 篇3
学习目标:
1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。
2、培养观察、推理、归纳能力,体会转化思想的价值。
3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。
学习重点:
探索并掌握梯形的面积计算方法。
学习难点:
理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。
■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)
1、按算式画出相应的图形,说说自己是怎么想的?
说说梯形的基本特征及各部分名称。
■学情预判:学生在探索并掌握梯形的面积计算方法上可能会困惑不解,要加强引道。
■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。
(2)小组交流:
你认为拼成一个平行四边形所需要的两个梯形有什么特点?
测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。
(3)如何计算一个梯形的面积?
从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)
得出以下结论:
这两个的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼
所以梯形的面积=
1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。
一个梯形的面积与整个平行四边形的面积有什么关系?
四、总结回顾:
通过今天的学习,你有什么收获?想要提醒大家注意什么?
数学梯形教案 篇4
教学内容:教材第135136页梯形和练一练,练习二十六第814题和思考题。
教学要求:
1.使学生认识梯形,知道梯形各部分的名称;认识等腰梯形。
2.培养学生的概括能力和比较、判断的能力,培养学生的空间观念。
教具学具准备:投影仪,直尺和三角尺,完全一样的硬纸梯形两个,完全一样的硬纸三角形两个;学生准备相应的学具。
教学过程:
一、引入新课
1.复习。
(1)提问:怎样检验两条直线是不是平行
(2)下面哪些四边形是平行四边形
提问:前三个图形为什么都是平行四边形第四个为什么不是
指出:不管四边形的位置怎样,只要两组对边分别平行,就是平行四边形。如果只有一组对边平行,另一组对边不平行,就不是平行四边形。
2.引入新课。
那么在四边形里,除了平行四边形外,还有怎样的四边形呢我们今天就来认识和学习四边形中的另一种图形。请同学们看这里的图。
二、教学新课
1.认识梯形。
(1)投影出示教材第135页下面的实物图。请同学们看这里的图形,像梯子的形状、跳箱的侧面、水渠的横截面,(用手比划着指出这些图形)都有几条边是什么图形
这些四边形的形状,可以用这样的图形来表示。(投影出示梯形)
现在我们用直尺和三角尺来检查一下,这个四边形有没有一组对边平行。(演示检验平行的一组对边)再请大家观察,另一组对边平行吗
提问:只有几组对边平行(板书:只有一组对边平行)
追问:为什么说只有一组对边平行(在只有下点.)
(2)课本第136页上也有这样的四边形。请同学们自己用直尺和三角尺检验一下,这个四边形有几组对边平行。
提问:有几组对边平行另一组平行吗一组对边平行,另一组对边不平行,就可以用怎样的话来说这两个四边形的边都有什么特点
(3)小结:只有一组对边平行的四边形叫做梯形。(板书出梯形定义)
大家一起说,上面这个图形叫做什么图形老师手里这个图形(出示硬纸梯形)叫做什么图形
看一看你自己准备的硬纸板图形,是什么图形为什么是梯形梯形与平行四边形有什么不同请大家指一指互相平行的一组对边。
2.认识梯形各部分的名称。
(1)梯形各部分的名称是什么呢请同学们看课本第136页第三节和右边的图形。(老师画出梯形)
谁来说一说,互相平行的一组对边分别叫做什么(板书:上底下底)不平行的一组对边叫做什么(板书:腰腰)
(2)提问:什么是梯形的高(学生回答后,老师画出梯形的高)
提问:高的画法和三角形、平行四边形的高的画法有什么相同的地方高和底有什么关系
请同学们拿出自己的梯形,(老师同时出示硬纸梯形)请你们一边指着图形,一边说一说哪里是上底和下底,哪里是两条腰。请大家在自己的硬纸梯形上画一条高。
(3)如果大家都把这个梯形横过来摆,(老师示范摆)还是不是梯形为什么
请大家指一指,这个梯形的上底和下底在哪里腰呢
大家指一指这个梯形的高。(老师巡视)为什么这一条是高
3.认识等腰梯形。
请同学们量一量课本第136页上第三个梯形两条腰的长度,看看它们有什么特点。
提问:这个梯形腰的长度有什么特点
指出:两腰相等的梯形叫做等腰梯形。(板书)
三、巩固练习
1.练一练第1题。
小黑板出示,让学生判断。第1、4两个图形让学生说明理由。指名学生画高,其余学生画在课本上。集体订正。
2.练练第2题。让学生在钉子板上围出几个不同的梯形。
提问:围梯形时,要怎样才能围出来
3.练习二十六第8题。请同学们在第149页的方格纸上画一个梯形。
4.练习二十六第9题。
请同学们任意用七巧板中的几块,拼成梯形。每人自己试试看,看能不能拼出梯形。(老师巡视)指名几位学生用不同的拼法在投影仪上拼出梯形。
提问:上面围的梯形、画的梯形、拼的梯形,都是怎样的四边形这互相平行的一组对边叫做梯形的什么
5.练习二十六第10题。
小黑板出示,让学生指出上底和下底。
说明:在梯形里,平行的一组对边分别叫做上底和下底。也就是说,把一条边作为上底,另一条相对的边就是下底。
你能在课本138页上画出这几个梯形的高吗请一名同学到黑板上画一画,其余同学画在课本上。集体订正。
提问:梯形的高和底有什么关系
6.练习二十六第11题。
请同学们判断第11题里的每一种说法,做在课本上。小黑板出示,学生回答,老师板书符号。并要求学生说明理由。
7.练习二十六第12题。分别指名学生说出图形的名称。
提问:它们之间有什么不同让学生画这三个图形的高。
提问:你发现这些图形的高都有什么共同的地方(和底互相垂直)
8.练习二十六第13题。
请同学们用两个完全一样的三角形拼一个平行四边形。谁愿意到投影仪上来拼-
提问:一个三角形面的大小,和拼成的这个平行四边形面的大小有什么联系
请同学们用两个完全一样的梯形拼一个平行四边形。谁到投影仪上拼一拼
提问:一个梯形面的大小,是这个平行四边形面的多少
9.练习二十六第14题。
请同学们做第14题,在书上的梯形里画一条线段,把它分割成两个三角形。请大家画一画,看有几种不同的分法。
提问怎样分的,有几种不同的分法。
四、课堂小结
这节课主要学习了什么内容有哪些收获
指出:只有一组对边平行的四边形叫做梯形。梯形里平行的一组对边分别叫做上底和下底,不平行的一组对边叫做腰。两条腰相等的梯形叫做等腰梯形。梯形的高也与底互相垂直。
五、教学思考题
课本第138页最下面的右边图里有哪几种图形请同学们课后数一数,每种图形有几个,然后告诉老师。
数学梯形教案 篇5
教学目标:
1、经历探索梯形的有关概念、性质的过程,在简单的操作活动中发展学生的说理意识、主动探究的习惯,初步体会平移、轴对称的有关知识在研究等腰梯形性质中的运用;
2、探索并掌握梯形的有关概念和基本性质,探索并了解等腰梯形的性质,能用它们解决简单的问题。
教学重点:探索梯形的有关概念、性质及其应用。
教学难点:探索等腰梯形的性质。
教学过程设计:
一、回顾——知识的连续和类比
本章中已经研究了哪几种特殊四边形?
二、创设问题情境——引出梯形概念
观察一组图片,在图中有你熟悉的图形吗?
三、探究:
底
(一)看看学学——梯形的有关概念
1、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。
高
腰
腰
一些基本概念(如图):底、腰、高。
底
2、等腰梯形:两腰相等的梯形叫做等腰梯形。
3、直角梯形:一腰和底垂直的梯形叫做直角梯形。
(二)做一做――探索等腰梯形的性质(引入用轴对称解决问题的思想)
1、在一张方格纸上作一个等腰梯形,连接两条对角线
问题一:图中有哪些相等的线段?有哪些相等的角?这个图形是轴对称图形吗?学生画图并通过观察猜想;问题二:这个等腰梯形的两条对角线的长度有什么关系?
结论:①等腰梯形是轴对称图形,对称轴是连接两底中点的直线。
②等腰梯形同一底上的两个内角相等,两条对角线相等。
(三)做一做,比一比——等腰梯形性质的简单应用
1、如图1所示,在等腰梯形中∠B=70度
1、,你能确定其他三个内角的度数吗?
2.AD
如图2所示,将等腰梯形ABCD的一条对角线BD平移到CE的位置,则图中有平行四边形吗?△CAE是等腰三角形吗?为什么?
(四)议一议
如图,四边形ABCD是等腰梯形,将腰AB平移到DE的位置。
问题一:DE把四边形ABCD分成怎样的两个图形?
问题二:图中有哪些相等的线段,相等的角?
注意:先让学生观看整个平移过程,使学生体会
平移思想在研究梯形问题时的运用,然
后再讨论完成问题。
(五)讲解例1――等腰梯形性的运用
如图,在等腰梯形ABCD中,AD=2,BC=4,
高DF=2,求CF和腰DC的长。
(目的:使学生学会用平移的思想解决有关梯形
问题)
(六)反思与小结
1、我们今天学习了哪几种梯形?主要研究了哪一种梯形?
2、等腰梯形有哪些性质?
3、今天我们在研究梯形问题时用了哪些方法将梯形问题转化为其他图形的问题?
四、课后作业
五、教后感:
数学教学是数学活动的教学,本节课能充分体现新课程精神,以人为本,发展学生的个性,学生是数学课堂教学的主体,注重学生亲身体验、实际操作,体现自主化,活动化,学生成为课堂学习的自主参与者,自主探索者。体现动手实践、自主探索、合作交流等有效的学习方式。注重学生从事数学活动的机会,把学习的主动权还给学生。
数学梯形教案 篇6
活动目标:
1,认识梯形,感知梯形的基本特征。
2,发现环境中与梯形相似的物体,寻找生活中的梯形。
3,促进幼儿的创新思维与动作协调发展。
4,激发了幼儿的好奇心和探究欲望。
活动重点:
知道梯形的基本特征,能在众多图形中找到梯形。
活动难点:
能够较完整的表达自己的操作结果。
活动准备:
经验准备:认识长方形,知道长方形的基本特征。
物质准备:
教具:图形宝宝(长方形,正方形,圆形,三角形)房子图一张,机器人图一张,生活中含有梯形元素的图片若干。学具:找梯形。不同形状图片、记录单、笔;给梯形涂色:画有梯形和其他图形的操作单、彩笔;送梯形回家。营造绿地场景,散放在草地上各种图形若干(梯形较多)贴有图形标记的框子4个。生活中的梯形:操作记录单上有梯形的物品和不是提梯形的物品图片,彩笔。
活动过程:
一、开始部分:情境导入,激发兴趣。
1,复习巩固认识长方形,正方形,圆形,三角形。
教师:小朋友,请你们看这是什么?(请柬)对了!图形王国的国王给老师送来的请柬,说图形王国要举行聚会,邀请我们中班的小朋友去参加,我们一起去看看吧!(老师带领幼儿进入活动室)。
2,通过寻找,复习巩固对长方形,正方形,圆形,三角形的认识,并引导幼儿说出图形的名称。
教师:请你们说一说自己的位置上都是什么图形?
二、基本部分:梯形在哪里
1,观察图片中房子所组成的图形,比较梯形和正方形的外形特征。
①复习正方形教师出示房子图片:这是什么?房子的身体是什么形状的?它有几条边?几个角?
②认识梯形教师:房顶是什么形状的?它有几条边?几个角?这个图形和正方形一样吗?
引导幼儿观察比较后回答。
③教师小结:梯形和正方形都有四条边,四个角;都有两条边是平平的。正方形四条边是一样长的,梯形的四条边不一样长。像这样:有四条边,四个角,并且一条边短,一条边长,两条边是平平的图形,名字叫梯形。
2,找一找梯形梯形宝宝可调皮了,它一会儿翻跟斗,一会儿躺下睡觉,你们看:(教师演示)这样还是不是梯形?
小结:原来梯形可以倒着放,躺着放,不管它们怎么放,都是梯形。
①教师出示多种梯形,引导幼儿找出梯形。(PPT)教师:"这些图形中哪些是梯形?你从哪里看出来的?"幼儿尝试找出梯形,并说出梯形的基本特征。
②教师出示机器人,找出机器人身体上的梯形。(图片)教师:图形宝宝变变变,变到机器人身上了,请你们找一找,机器人身上哪里有梯形?并把它拿下来。
③寻找生活中与梯形相似的图形,巩固对梯形特征的认识。
教师:想一想,找一找生活中哪些东西像梯形?(幼儿根据生活经验自由回答)教师:仔细看看,这些图形像不像梯形?(PPT)教师出示梯子、台灯(底座)等图片,进一步巩固对梯形特征的认识。
3,小组操作,进一步巩固对提醒的认识。
①介绍小组活动。
找梯形:请小朋友把藏在框子里的梯形宝宝找出来,贴在记录单上并在记录单上用喜欢的方式记下找到了几个梯形宝宝。
给梯形涂色:你看到方框里藏着的梯形了吗?给他们图上自己喜欢的颜色,最后数一数方框里一共有几个梯形,用喜欢的方式记录下来。
送梯形回家:请小朋友把在草地上玩耍的图形宝宝找出来送回家。(梯形居多)生活中的梯形:请小朋友找一找生活中哪些物体是梯形的并在括号里打"√"。
②幼儿操作,教师指导。
引导幼儿给梯形涂色,并点数梯形。
三、结束部分:分享交流
1,交流操作结果。
教师:谁来说一说,你今天在哪里找到了几个梯形宝宝。
(幼儿介绍操作结果)
2,教师小结:今天小朋友们在图形王国里认识了梯形,找到了许多梯形宝宝,你们太棒了,希望图形王国的国王再邀请我们中班的小朋友来做客,寻找其他的图形宝宝。
五、活动反思:
成功之处:幼儿在找的过程中,能体验到一种亲身参与,获得成功的体验。在找图形的过程中,让幼儿把梯形和其他图形分开来,这样很大程度上结合了幼儿对梯形的感性认识。
失败之处:在找图形之后,我没有让幼儿直接拿材料出来折剪,而是让他们在梯形的感性认识基础上寻找生活中的梯形,应该和长方形、正方形重叠起来比较,在比较的过程中认识梯形的一些特征,这样更强化了幼儿的感性认识。
各位老师:俗话说:"教无定法,贵在得法"。以上是我对这个教学活动的理解、分析与做法,如有不当之处请评委老师给与批评指正,谢谢!
数学梯形教案 篇7
一、教学目标
(一)教学知识点
1、梯形的有关概念、
2、梯形的性质、
(二)能力训练要求
1、经历探索梯形的有关概念、性质的过程,在简单的操作活动中发展学生的说理意识,主动探究的习惯,初步体会平移、轴对称的有关知识在研究梯形性质中的运用、
2、探索并掌握梯形的有关概念和基本性质,探索并了解等腰梯形同一底上的两个内角相等,两条对角线相等等性质、
(三)情感与价值观要求
1、在操作活动中发展学生的说理意识,主动探究的习惯、
2、通过添加辅助线,把梯形问题转化为平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想、
二、教学重点
1、梯形的有关概念、
2、梯形的基本性质、
三、教学难点
添加辅助线,把梯形问题转化成平行四边形或三角形问题、
四、教学方法
引导、启发式、
五、教具准备
投影片六张,信纸或有平行线的纸每人一张、
第一张:P80的图片(记作4、6、1 A);
第二张:(记作4、6、1 B);
第三张:做一做(记作4、6、1 C);
第四张:议一议(记作4、6、1 D);
第五张:例1(记作4、6、1 E);
第六张:小结(记作4、6、1 F)、
六、教学过程
Ⅰ、巧设情景问题,引入课题
[师]前面我们探讨的四边形都是平行四边形,那么什么样的四边形是平行四边形呢?平行四边形有哪些性质?
[生]两组对边分别平行的四边形是平行四边形、
平行四边形的性质有:
小学数学教案6篇
最近读了一篇关于“小学数学教案”的网络文章写得非常出色,感谢大家的阅读和支持希望大家能够多多分享帮助更多人。每个教师都需要在上课前准备一份完整的教案和课件,相信对于这些要写的教案和课件,老师们都并不陌生。教案的存在对于提高教师的教育教学规范化和制度化起到了积极的促进作用。
小学数学教案 篇1
教学过程:
一、情景导入
1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站,B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。
2、在这里,我们找A、B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢?
出示课题:公倍数
谁能用自己的话说一说什么叫公倍数?
这一个是最小的,我们又称它为什么?
补充课题:最小公倍数
谁能再来说一说什么叫最小公倍数?
今天我们就来研究。
二、探究
1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。
2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P69--P71。
3、成果汇报:(由学生任选一种方法)
(1)公倍数有多少个?
(2)求最小公倍数的.几种方法:
①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):
②分解质因数:如:12与30的最小公倍数(见上右图)
最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。
[12,30]=2×3×2×5=60
从这两个分解质因数的式子里你能看出12与30的最大公约数是几?
最大公约数与最小公倍数之间有什么关系?参见下左图。
最小公倍数是两个数的最大公约数与各自独有质因数的乘积。
短除法:如求:36和45的最小公倍数,参见上右图。
讨论:与求最大公约数比较有什么异同之处?
短除法与分解质因数有什么联系?
任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):
16和20;65和130;4和15;18和24。
得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。
4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?
三、回家作业布置(感兴趣的同学做)
世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。
教学反思:
我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。
小学数学教案 篇2
【教学内容】
圆锥的体积(1)(教材第33页例2)。
【教学目标】
1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。
2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。
【重点难点】
圆锥体积公式的推导过程。
【教学准备】
同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。
【情景导入】
1、复习旧知,作出铺垫。
(1)教师用电脑出示一个透明的圆锥。
教师:同学们仔细观察,圆锥有哪些主要特征呢?
(2)复习高的概念。
A、什么叫做圆锥的高?
B、请一名同学上来指出用橡皮泥制作的圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)
2、创设情境,引发猜想。
(1)电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)
(2)引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)
问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)
问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)
过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。
【新课讲授】
自主探究,操作实验
下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。
出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?
(1)小组实验。
A、学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)
B、同组的学生做完实验后,进行交流,并把实验结果写在黑板上。
(2)全班交流。
①组织收集信息。
学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:
A、圆柱的体积正好等于圆锥体积的3倍。
B、圆柱的体积不是圆锥体积的.3倍。
c、圆柱的体积正好等于圆锥体积的8倍。
D、圆柱的体积正好等于圆锥体积的5倍。
E、圆柱的体积是等底等高圆锥体积的3倍。
f、圆锥的体积是等底等高圆柱体积的。
②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)
③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?
圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。
(3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?
(4)推导公式。尝试运用信息推导圆锥的体积公式。这里的sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?
(5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)
【课堂作业】
完成教材第34页“做一做”第1题。
先组织学生在练习本上算一算,然后指名汇报。
答案:13×19×12=76(cm3)
【课堂小结】
教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。
【课后作业】
1、完成练习册中本课时的练习。
2、教材第35页第3、4、5题。
答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3sh计算出该物体的体积。
第4题:(1)25、12(2)423、9
第5题:(1)×(2)√(3)×
小学数学教案 篇3
教学内容:
1、复习100以内的加减法、连加、连减、加减混合运算。
2、统计的知识和人民币的使用。
教学目标:
1、通过对两位数加减两位数、连加、连减、加减混合运算的整
学生正确、熟练地进行计算。
2、提高学生运用所学知识解决实际问题的能力。
教学重点:
使学生进一步理解算理,熟练的掌握100以内加减法的计算方法。
教学难点:
提高学生运用知识的能力。
教学过程:
一、100以内的加减法。
1、看图说一说:小熊举的是什么类型的题?(两位数加两位数)
提问:我们在做题时应注意什么?
25+2125+27说一说计算过程。
小猴举的题:65-2265-29
2、连加、连减和加减混合的内容。
出示图片:你能提出哪些问题?怎样计算。
买羽毛球拍和排球公用多少元,应找回多少元?
15+12=27(元)30元5角–27元=3元5角
买足球和乒乓球拍还差多少钱?
30+10=40(元)40元-30元5角=9元5角
篮球、足球和排球一共要用多少钱?
50+30+15=95(元)
二、课题作业
计算下面各题:
59+827+2599-3831-24
63-938+4650-2377+23
88-5543-3412+963+36
三、观察与测量。
1、谁离大树最近。
房屋
5厘米
3厘米
蚂蚁大树
4厘米
小学数学教案 篇4
教材分析:
本节课教材的设计重视自然数、奇数、偶数与现实生活的联系,尊重学生的生活经验和已有的知识基础,利用真实的生活素材开展数学学习。
学情分析:
学生对生活中的情景比较熟悉,在认识自然数上并不陌生。但是奇数、偶数的特点总结方面可能会欠缺一些。 设计思路 通过用谜语星星引发后面的故事情景,让学生打开智慧之窗。从中激发了学生的学习兴趣,使学生深刻理解了“数学来源于生活而又高于生活”的道理,感受到数学就在我们身边,并深深体会到数学的价值。给学生提供自主探究,合作交流的时间和空间,让学生在独立思考的基础上,合作交流,认识奇数和偶数。
教学方式:
自主、探究、合作。
教学手段:
借助多媒体课件。
教学目标:
1、结合具体情景,经历认识自然数、奇数、偶数的过程。
2、认识自然数,能用直线上的点表示自然数;知道奇数、偶数;能判断一个数是奇数还是偶数。
3、感受数学与日常生活的联系,激发学生学习数学的兴趣。
教学重点:
让学生认识自然数,能用直线上的点表示自然数。
教学难点:
知道奇数、偶数;能判断一个数是奇数还是偶数。
课前准备:
课件。
教学过程:
一、探索自然数的特征。
师:老师发现,天空有几颗非常明亮的星星,它们一共是4.5颗,你觉得老师这句话有什么问题吗?
生:我觉得星星的颗数不能用4.5来表示。
师:那你觉得用什么数来表示才好呢?
生:我觉得用像1、2、3这样的数来表示好。
师:说的非常好!我们平时数东西的'时候,就像这样1,2,3,4,5一个一个地数,这些数都叫自然数。(板书:自然数) 课件出示问题:0是自然数吗? 小组讨论。学生汇报结果。
小结:0也是自然数,它表示一个物体都没有。
二、用直线上的点表示自然数。
师:自然数不但可以用数的形式来表示,还可以用直线上的点来表示。我们一起来看。(课件出示:用直线上的点表示自然数的内容。)
师:请大家仔细观察直线上的数,(手势)看看你能发现什么?和你的同桌说一说。 学生观察交流、讨论。教师可以参与到学生的学习中去。 教师指名回答。
师:这些就是我们今天要掌握的自然数的特征,大家跟老师一起再来概括一遍,“自然数的个数是无限的,没有的自然数,最小的自然数是0。”
三、认识奇数和偶数。
师:大家喜欢做游戏吗?我们一起来做个游戏。请十位同学到前面来。 学生举手,教师请十位学生到前面站成一排报数:1、2、3 师:请报单数的向前一步走。
师:你有什么发现吗? 学生交流。
生1:我发现10名同学的报数不是双数就是单数。
师:刚才我们提到了单数和双数,单数都有哪些数?双数又有哪些数?谁给举一些例子?
师:在数学上,我们把单数又叫做奇数,(板书:奇数),注意字的读音。双数又叫做偶数。(板书:偶数)值得说明的一点:0也是偶数。
师:现在,谁能举出几个奇数和偶数的例子呢?
四、尝试应用。
1、师:我们在生活中也经常用到奇数和偶数。生活中哪些地方用到奇数和偶数?
生1:电影院的座位号分奇数号和偶数号;
生2:上体育站队报数。
2、观察数列,初探奇数、偶数的规律。
师:我们已经认识了奇数和偶数。下面请同学们拿出练习本,试着按要求写出奇数和偶数。
(1)写出自然数1-30之间所有连续的奇数。
(2)写出自然数1-30之间所有连续的偶数。 学生在练习本上写,教师巡视指导。
师:谁愿意给大家展示一下你写的。你给大家读一下好吗?
师:我们一起来看这两组数,有什么新发现吗?四人小组可以讨论讨论。 学生讨论。
师:哪个组想把你们的发现告诉大家?
五、课堂练习。
1、下面各数中,哪些是自然数? (出示题目:6、25、1、47、0.01)
2、在括号里填上合适的数。
3、在圆圈里填上奇数偶数。
4、数字游戏。 (学生手中拿着奇数和偶数的数字牌根据老师口令做游戏)
六、全课小结。
师:这节课你学到了哪些知识呀?(学生交流)
师:看来同学们的收获真不少,老师这有一道拓展练习想考考大家,请看大屏幕(拓展练习:教室里有一盏亮着的日光灯,淘气的小明一连拉了8下开关。聪明的同学们,现在请你们来判断,这盏灯是否还亮着?如果拉9下呢?拉100下呢?)
师:看来,自然数就在我们身边,让我们都做生活的有心人,去生活中发现数学的美吧!
小学数学教案 篇5
教学目标
(一)准确地理解和掌握质数和合数的意义。
(二)会判断一个数是质数还是合数,会把自然数按约数个数进行分类。(三)培养学生观察比较、抽象概括和判断推理的能力。
教学重点和难点
(一)质数、合数的意义。
(二)质数、合数与奇数、偶数的区别。
教学用具
投影片,2~50的自然数表。
教学过程设计
(一)复习准备
1.判断下面各数,哪些是偶数?哪些是奇数?奇数和偶数是根据什么来分的?(投影片)2,3,4,9,14,15,101,187,235,561,740,927,839,456。
2.按照能否被2整除对自然数进行分类:(投影片)
3.请说出下面各数的所有约数:(投影片出题,学生口答老师板书。)
1的约数有________;2的约数有________;
3的约数有________;4的约数有________;
5的约数有________;6的约数有________;
7的约数有________;8的约数有________;
9的约数有________;10的约数有________;
11的约数有________;12的约数有________。
教师:请观察板书,左边和右边的数各有什么特点?(左边是奇数,右边是偶数。)教师:我们已经学过按照能否被2整除对自然数进行分类。除了这种分法还有没有别的分法呢?这节课就研究这个问题。
(二)学习新课
1.质数、合数的意义。
(1)教师:(指板书)请把1至12各数的约数的个数就出来(学生口答,老师在每列数的后面补出括号,填上数)?
教师:请观察这些数和它们的约数个数,看一看约数的个数有几种情况?
学生口答后老师板书:有三种情况,约数个数是一个,两个,两个以上。
教师:请再举几个数,看一看它们的约数的情况是不是与这几种情况相符合?
学生举例并分析出所举出的数的约数是2个或者两个以上。(小组活动)
(2)教师:请观察只有两个约数的这些数和它们的约数,看看这些约数有什么共同的特点?
学生口答后教师板书出:1和它本身。
教师:如上面这些数,都具有这个特点,我们把它们叫做质数(也叫做素数)。板书:质数。
教师:谁能说一说什么叫质数?
学生口答后老师再把板书补充完整:
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
教师:请观察有两个以上约数的这些数和它们的约数,有什么特点?
在学生口答后,老师逐次板书出:除了1和它本身还有别的约数;合数。
在学生完整地概括什么是合数后板书:
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
教师:的区别是什么?(约数只有两个还是两个以上。)
2.判断一个数是质数还是合数。
(1)(板书)例2,判断下面各数,哪些是质数、哪些是合数(数竖排写)。
17(的约数):1,17(两个)
22(的约数):1,2,11,22(两个以上)
29(的约数):1,29(两个)
35(的约数):1,5,7,35(两个以上)
37(的约数):1,37(两个)
87(的约数):1,3,29,87(两个以上)
教师:根据什么来判断?(检查每个数的约数的个数。)
学生口答,老师在上面各数后面板书出判断过程。
板书:17,29,37是质数
22,35,87是合数。
再请学生说一说怎样判断一个数是否是质数?
教师:一个数有两个以上的约数,判断它是不是质数时,需不需要把它的所有的约数都找出来?(不需要,只要找出第三个约数,就能证明它除了1和本身外还有别的约数。)
口答练习:下面哪些数是质数?哪些数是合数?19,21,43,67。
(2)教师:判断一个数是不是质数,除了检查它的约数外,还可以用查质数表的方法来判断。
请学生取出2~50的自然数表。按如下要求去做:先划掉2的倍数,再依次划掉3,5,7的倍数(不包括2,3,5,7本身)看剩下的是什么数?能说明理由吗?
学生书写和讨论,老师巡视。最后说明这就是50以内的质数表。请看课本59页质数表。
练习:请判断下面各数是质数还是合数?并说出自己是如何判断的?(查表或是看约数)
31,57,87,4325,632080。
(3)教师:我们已经认识了质数、合数的区别是它们约数的个数,那么我们能不能按约数的个数这个特点对自然数进行分类呢?分几类呢?
学生讨论中有分两类,三类之争,老师引导从约数个数去看。最后在学生讨论基础上画出集合图:
教师:为什么1要单列一类?
口答后板书:1既不是质数又不是合数。
教师:到此,这节课要研究的自然数的一种新的分类问题已解决了,还认识了质数、合数两个概念。板书引出课题:质数和合数。
3.质数,合数与奇数,偶数的区别。
口答填空:(投影片)在1~20的自然数中,奇数是();偶数是();质数是();合数是()。
下面几种说法对不对?说明理由。
①质数都是奇数;
②合数都是奇数;
③除2以外的偶数都是合数;
④自然数除了质数就是合数;
⑤自然数除了奇数就是偶数。
请再说一说奇数、偶数与质数,合数的区别。
(三)巩固反馈
1.口答:(投影片)
①在19,29,39,77,84,91中( )是质数;
②合数最少有()个约数,最小的质数是(),最小的合数是(),最小的奇数是()。
2.“一个数有1和它本身两个约数,这样的数叫做质数。”这句话对不对?为什么?
(四)课堂总结和课后作业
什么是质数?什么是合数?
按约数个数对自然数进行分类。
质数、合数与奇数,偶数的区别。
作业:课本P62练习十三,1,2,3,4。
课堂教学设计说明
本节内容是在学生已掌握了约数、倍数、奇数、偶数的基础上,新引进质数、合数两个新概念。教学从研究根据约数个数对自然数进行分类入手,这个分类与已学过的奇数、偶数分类容易混淆,所以设计复习提问和新课教学共用一组板书,这样给学生创造了一个便于比较的视觉效果,(奇数、偶数可以混合排列,也可以左右排列,前者观察与比较难度比后者大,这可以根据班级情况自行选定)。通过比较,学生清楚地认识到质数,合数以及1的区别在于约数个数的多少,同时使学生分清了质数、合数与奇数、偶数的本质区别是对自然数采用了不同标准的分类,这样在学生头脑中建立了清晰的概念,在应用中既不会分类时把1划错范围或遗忘,也不会把质数、合数与奇数,偶数混为一体。
质数、合数概念的归纳,设计中是引导学生从观察入手,抓住关键词,逐层进行的,这样有利于学生概括,归纳能力的培养。
新课教学分三部分。
第一部分教学质数,合数的意义。
第二部分学习判断一个数是不是质数的方法。
第三部分是区别质数、合数与奇数,偶数。
小学数学教案 篇6
教学内容:
负数的初步认识,教科书第2~4页例1、例2,
教学目标:
1、知识目标 使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、能力目标 使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0
3、感目标 使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数
教具准备:
多媒体课件、温度计、练习纸、卡片等
教学过程:
一、承前启后
1、出示主题图。教材第2页主题图。
2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-2℃ 和 2℃ 各代表什么意思?) 引出课题并板书:负数的初步认识
二、学习引领
1、教学例1 。
(1)教师板书关键数据:0℃ 。
(2)教师讲解0℃的意思: 0℃表示淡水开始结冰的温度。
比0℃低的温度叫零下温度,通常在数字前加-(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。
比0℃高的温度叫零上温度,在数字前加+(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。
(2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
(4)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?
2、学生讨论合作,交流反馈。
(1)请同学们把图上其它各地的温度都写出来,并读一读。
(2)教师展示学生不同的表示方法。
(2)小结:通过刚才的学习,我们用+和-就能准确地表示零上温度和零下温度。
3、教学例2。
(1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说支出(-)或(+)这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。