老师会将课本的主要教学内容整理到教案和课件中,因此写教案是不能随意对待的。教案是教师教学的重要参考依据,那么有哪些值得参考的教案和课件呢?这是励志的句子为您特别准备的“概率课件”。希望您品尝后会喜欢,还请继续关注我们的网站以获取更多最新消息!
概率课件 篇1
本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面“古典概型”及“几何概型”的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。
重点:概率的加法公式及其应用;事件的关系与运算。
⑴了解随机事件间的基本关系与运算;
⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。
2、过程与方法:
⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;
⑵通过学生自主探究,合作探究培养学生的动手探索的能力。
3、情感态度与价值观:
通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
采用实验观察、质疑启发、类比联想、探究归纳的教学方法。
在掷骰子的试验中,我们可以定义许多事件,如:
⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。
⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。
「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算
⑴经过上面的思考,我们得出:
这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。
在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。
(例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)
「设计意图」为更好地理解互斥事件和对立事件打下基础,
⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?
②在掷骰子实验中事件G和事件H是否一定有一个会发生?
「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。
⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。
⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。
我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、
(通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)
例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚
例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:
(1)取到红色牌(事件c)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1―P(c)
「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。
「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
概率课件 篇2
各位老师,下午好,今天我要说的课题是:随机事件的概率
一、教材分析
1、教材所处的地位和作用
《随机事件的概率》是高中数学教材人教版教材必修3、第三章、第1节内容,是学生学习《概率》的入门课,也是学习后续知识的基础。
就知识的应用价值上来看:概率是反映自然规律的基本模型。概率已经成为一个常用词汇,为人们做决策提供依据。
就内容的人文价值上来看:研究概率涉及了必然与偶然的辨证关系,是培养学生应用意识和思维能力的良好载体。
2、重点:①了解随机事件发生的不确定性和频率的稳定性;
②正确理解概率的意义。
难点:①理解频率与概率的关系;
②正确理解概率的含义。
二、学情分析
1.学生心理特点
虽然高中学生有一定的抽象思维能力,但是概率的定义过于抽象,
学生较难理解。
2.学生已有的认知结构
(1)初中已经学习过随机事件,不可能事件,必然事件的概念
(2)学生在日常生活中,对于概率可能有一些模糊的认识。
(3)学生思维比较灵活,有较强的动手操作能力和较好的实验基础。
3.动机和兴趣
概率与生活息息相关,这部分知识能够引起学生的兴趣。
三、教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
1、知识与技能:
(1)由日常生活中的事件,理解必然事件、随机事件、不可能事件等概念。
(2)通过抛掷硬币实验,正确理解频率、概率概念,及其两者关系。
(3)利用概率知识,正确理解生活中的实际问题。
2、过程与方法:学生在课堂上经历试验、统计等活动过程,进一步发展合作交流的意识和能力。
3、情感、态度、价值观:
(1)通过试验,培养学生观察、动手和总结的能力,以及同学之间的交流合作能力。
(2)通过教学,培养学生把实际问题与数学理论相结合的能力,提高学生的探究能力。
(3)强化辨证思维,通过数学史渗透,培育学生刻苦严谨的科学精神.
四、教学策略
为了突出重点,突破难点,从而实现教学目标。在教学过程中计划进行如下操作:
1、教学手段
(1)精心设计教学结构,使学生经历质疑——解惑——应用的体验探究过程。
(2)努力创设情境案例,吸引学生的注意力,激发学生的兴趣
(3)合理设计数学实验,通过动手操作,培养学生“做”数学的精神,享受“做”数学带来的成功喜悦。
(4)充分利用软件辅助教学,便于课堂操作和知识条理化,教学更加生动形象,保证学生的注意力始终集中在课堂上。
2、教学方法
本节课贯彻“教师为主导、学生为主体、思维为核心”的教学思想,采取了以建构主义理论为指导,着重于学生实验、探索研究的启发式教学方法,结合学生分组讨论、归纳的教学方法。
五、教学用具:计算机、硬币、学生生日调查表
六、教学程序及设计的七个环节
1.情境引入:引出本章的课题,让学生体验学习概率的必要性和重要性
用“班级有无同生日的问题”引入课题
设计这个引入有两个理由:(1)学生非常重视生日,对这个问题充满兴趣;(2)学生普遍有一个错误的认识:“班里有同生日的人”是个小概率事件
当认知到“50个人中有两人生日相同的概率可以高达96。5%,基本上的班级都会有生日相同的人”,与原有的认识存大很大的差距,充分感受到概率的神奇;
事先合理设计表格,现场调查班级生日情况,发现确实有同生日的人,充分调动班级气氛,从而极大的激发学生学习概率的兴趣。(万一没有生日相同的学生,解说即使发生的可能性高达96。5%,也还是存在不发生的可能),再让学生举生活、学习等各方面的例子,再结合章头图,学生会感知到概率无处不在,概率是有用的,数学也是有用的,认识到学习概率的重要性。
2.明确课题:让学生明确本节课研究重点是随机事件的概率
通过区分四个事件的差异,引出事件的分类,并总结不可能事件、必然事件和随机事件的概念,明确本节课研究的重点是随机事件的概率。
例1的设计意图:加深对事件的分类和概念的理解,通过对“事件B”条件的改变,强调结果是相对条件而言的;
练习1的设计意图:引入典故“守株待兔” ,让学生用数学概率的知识来辨析这个典故,渗透数学的教育意义,也体现数学来源于生活。同时,学生会感知到:知道随机事件的概率的大小有利于我们做出正确的决策。
3.概念建构:寻求获得随机事件的概率的方法,并得出概率的概念,并对频率和概率作了对比和辨析
第一个步骤:引导学生用试验得到的频率去估计事件的概率
现场创设情景:学生现场“掰手腕“比试,引导学生感知到解决问题的最直接的方法就是试验。
第二个步骤:通过掷硬币试验,引出概率的定义,突破难点
(1)组织学生动手掷硬币。根据以往的实践为了追求比较好的试验效果,先对抛掷的方式作了一定的引导,保证试验的随机性,体现了教师为主导,学生为主体的一个教学理念。对于概念的理解,也会产生积极的意义。具体操作的环节如下:
严格按照书本的要求,让每位学生做10次抛掷硬币的实验,并将实验结果填入书本表格中。四个学生一组,将本组同学的实验结果统计好,填入表格中。充分利用excel软件辅助教学的强大功能,计算出各组频率并绘制出折线图。学生亲身体验到随机事件发生的不确定性,试验次数比较小时,频率是不稳定的,在汇总数据环节让学生观察表格,直观感知频率是不稳定的。
(2)通过计算机模拟试验,重复做大量的掷硬币试验,动态的让学生感知:每次试验频率是不确定的,但稳定在某个常数附近
(3)结合历史上数学家所做的大量独立重复试验,对比两张频率的折线图,得出结论,形成概率的统计定义。
这一段是本节内容的难点,需要把对数据、图表的直观印象转化为抽象的概率定义。而通过实验操作、观察图表、分组讨论、归纳总结,很好的突破了这一难点,并实现了通过抛掷硬币实验,正确理解频率、概率概念,及其两者关系。培养学生观察、动手和总结的能力,以及同学之间的团队精神这一教学目标。
4.概念深化:进一步明确频率与概率的区别与联系
我安排了两个练习
例2即时训练,设计意图是落实重点让学生熟练掌握用频率估计概率这一方法,强调频率的稳定性和概率的确定性;
练习2的设计意图是是为了说明每次试验的结果具有随机性,进一步提升本堂课的主题;
通过表格和图像两种语言,生动直观的让学生感觉到:
不同点:频率是随机的,在试验前不能确定;概率是确定的值,是客观存在的,与试验无关
联系:随着试验次数的增加,频率会稳定在一个常数附近,得到概率的估计值。
5.练习反馈
(1)练习3的设计意图:这个练习综合了本节课的重点,能很好的反馈落实情况,而且通过训练巩固了所学知识点
6.归纳小结
小结的作用是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结知识内容及研究方法,提高学生的反思、总结的意识和语言表达能力。同时我会补充帮助学生全面地理解,掌握新知识。特别地,在小结过程中会提出本节课的数学思想:实验、观察、归纳和总结。
7.课后探究
书本练习1
这个探究题的设计意图:一方面巩固本节课的内容,也为下节课的学习搭好桥梁。
七:板书
设计意图:合理、整洁的板书能够让学生对本节课内容结构更好的掌握
以上是我对这堂课的理解与设计,敬请各位专家批评指正,谢谢。
概率课件 篇3
统计与概率 第1课时
教材内容
1.本节课复习的是教材114页6题及相关习题。
2.6题以我国城市空气质量为素材,让学生根据扇形统计图所提供的信息解决实际问题,在这里,“273个城市空气质量达到二级标准”是一个多余信息,要求学生在解决问题时学会选择有效的信息。在此基础上,让学生通过调查、记录、查询等手段了解所在城市的空气质量状况,提出改善空气质量的建议。教材117页17题主要复习根据统计图中部分量与总量之间的关系,灵活选用乘法或除法解决问题。
3.教材通过复习,帮助学生进一步体会扇形统计图能清楚地反映各部分数量同总量之间关系的特点,并能根据给出的信息解决一些问题,提高分析信息、解决问题的能力。教学目标 知识与技能
1.进一步认识扇形统计图,能对统计图提供的信息进行分析解读。2.灵活运用统计知识进行相关的计算或解决问题,加深对所学知识的理解。过程与方法
1.经历整理和复习知识的过程,培养学生观察、思考、总结的能力,渗透比较思想。
2.通过复习,提高学生收集信息、处理信息、解决问题的能力。情感、态度与价值观
1.引导学生将数学知识与现实生活相结合,解决一些实际问题,感受数学的实用价值,激发学生的学习兴趣。
2.通过小组合作学习,鼓励学生乐于合作、善于交流、敢于表达。重点难点
重点:巩固所学的统计知识,提高解决问题的能力。难点:根据统计图准确分析数据。
课前准备
教师准备 PPT课件
教学过程
⊙谈话导入
1.我们一共学过哪几种统计图?
(条形统计图、折线统计图、扇形统计图)这几种统计图分别具有什么特点?(1)小组内交流。(2)学生汇报。
生1:条形统计图的特点是很容易比较各种数量的多少。
生2:折线统计图的特点是不但可以表示数量的多少,还可以清楚地看出数量的增减变化情况。
生3:扇形统计图的特点是能清楚地表示各部分数量与总数之间的关系。2.什么是扇形统计图?
(扇形统计图用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分比)
设计意图:在复习扇形统计图意义的基础上,复习学过的统计图的种类及特点,在对比中进一步加深对扇形统计图的了解。
⊙复习用扇形统计图知识解决问题 1.根据扇形统计图解决问题。(课件出示教材114页6题)
我国城市空气质量正逐步提高,在2010年监测的330个城市中,有273个城市空气质量达到二级标准。监测城市的空气质量情况如下图所示。
(1)空气质量达到三级标准的城市有多少个?
(2)了解你所在城市的空气质量,讨论一下如何提高空气质量。2.解决问题。(1)解决问题(1)。
①思考:题中的有效信息有哪些?无用信息有哪些? ②汇报。
生1:题中“有273个城市空气质量达到二级标准”是无用信息。生2:对于问题(1)而言,题中“330个城市”和“16.1%”是有效信息。③根据统计图算出空气质量达到三级标准的城市有多少个。330×16.1%≈53(个)(2)解决问题(2)。
①组内交流:说一说你所在城市的空气质量问题。②全班交流:如何提高空气质量? 生1:要改善取暖工程。生2:加强环保意识。
生3:严禁开私家车,统一乘坐公交车,这样避免二氧化碳大量排放。生4:减少工厂废气排放。
设计意图:根据从扇形统计图中获取的信息进行相关的计算,进一步培养学生获取信息、解决问题的能力。
⊙巩固练习
1.小红收集的各种邮票统计如上图。
(1)小红收集的风景邮票、人物邮票和建筑邮票数量的比是()。(2)小红收集的()邮票数量最多。
(3)小红共收集了200张邮票,其中风景邮票有()张。2.完成教材117页17题。⊙课堂总结
通过这节课的复习,你有什么收获? ⊙布置作业
查资料,进一步了解扇形统计图的应用范围。
概率课件 篇4
(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;
(2)不可能事件是指一定不能发生的事件;
(3)随机事件是指在一定条件下,可能发生也可能不发生的.事件;
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.
事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.
样本:从总体中所抽取的一部分个体叫总体的一个样本.
统计学中的基本思想就是用样本对总体进行估计、推断,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分析规律.
初中学生想要学好数学,在课上一定要认真听老师讲课。老师在课堂上讲的是非常重要的知识点,但是在初中数学课上选择做笔记并不是一个正确的做法。
在初中数学课上你需要做的就是跟住老师的思维,学好老师的思维方式,这个阶段要培养自己的数学逻辑思维能力。大部分的初中数学老师,对于这门学科都有自己的见解,所以跟住老师的思路久而久之就会逐渐转换成自己解题的思路。
数学是一门严谨的学科,对于自己不会的地区和知识点初中生绝对不能模棱两可的就过去了,而是要把它弄清楚做明白。有的同学在初中数学的学习中不会只是因为不熟而已,那么怎么办?就是多练习和多思考,数学的学习没有什么捷径和技巧,熟能生巧才是最好的学习技巧。另外,初中数学想要打高分,在做题方面一定要仔细和认真,不能马虎。
2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。
3.直线:将线段的两端无限延长就形成了直线。直线没有端点。
5.相交:两条直线有一个公共点时,称这两条直线相交。
6.两条直线相交有一个公共点,这个公共点叫交点。
7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)
9.距离:连接两点间的线段的长度,叫做这两点的距离。
概率课件 篇5
中职生处于青年前期,人际交往开始由幼稚简单走向成熟复杂。他们的主要人际关系是与父母、老师和同学的关系,与父母的关系不如以前亲密,与老师的关系上不会盲目接受任何一位教师,同学关系有时超过与父母和老师的关系,并由此获得了安全、尊重、爱与自我价值的实现。
由于没有考上高中,中职生在家长的责怪、亲朋的惋惜下,心不甘情不愿地进入职校;再加上目前人才市场供应失衡、就业压力大等,这让不少中职生产生强烈的逆反心理,在与同龄人和师长交往时,人际关系易出现矛盾和冲突。具体表现为:一方面容易发生交往困难,比如过分注重自己的形象,来到一个新的学习环境里,不愿与考上高中的老朋友来往,自我封闭,怕与人交往,或者自我心理设防过重,与新同学沟通困难甚至相互对立;另一方面又注重“友谊”,崇尚“义气”,难免益友、损友不辨,甚至“拉帮结派”。比如不忍拒绝好朋友的邀请,尝试吸烟、早恋、群殴、去网吧玩游戏甚至赌博,最后不能自拔。
许多班主任反映,中职生人际交往的能力亟待提高,父母说话重了一些就离家出走,老师管教稍严一点就出言不逊,学生之间常常因为谁在谁背后说了谁的坏话、谁泄露了谁的隐私而闹矛盾,因此十分有必要在人际交往中帮助中职生发展人际交往能力。
大多中职校都把“学会做人”作为中培养目标的核心,中职学生社会交往倾向更加突出,他们内心渴望和同学交往,但是实际生活中又不懂得怎样交往,往往会出现困惑甚至障碍。
由于独生子女的身份和初中沉重的学习压力,中职生普遍缺少同龄交流伙伴,喜欢通过QQ、MSN、E-MAIL、手机短信等现代网络联络方式进行人际交往,有的交往对象还是虚拟世界的陌生人,缺乏真实的人际交往历练,也使他们不喜欢不擅长现实生活中的人际交往,形成自卑、猜疑等人际交往障碍。
90后学生421的家庭教育模式,导致他们大多自我中心主义突出,在人际交往中很少顾及他人的需要和感受,往往会排斥他人的价值观念而树立自我认同,容易产生嫉妒、偏激、报复心强等人际交往的障碍。
本课利用调查、活动、视频等方式创设教学情境,使学生在活动中自我分析与同学交往存在的困惑与障碍,并通过学生体验、讨论以及老师引导、总结等方式,让学生发现一些人际交往的有效途径。在整个教学过程中,力争通过情境引发学生思考,激发学生兴趣,促进学生积极主动参与体验,让学生能够在实践中体验人际交往的奥秘。
(一)本课的亮点:
1.在情境中感悟。以“动之以情”为突破口,通过调查、活动、视频等多种形式,设置符合课堂教学所需的情境,调动学生积极地去参与、感悟、分享,引发内心情感的触动,加深对所学知识的感悟,在潜移默化中实现学习效果的升华。
2.在实践中锻炼。以“在人际交往中学习人际交往”为主旨,布置同学完成一个相关的调查任务,还特别设计了人际交往的体验活动和训练内容,让学生在实践中去切身体验什么是人际交往,并从中发现问题,及时解决问题,提高人际交往的能力。
本课教学内容的设计源于中职生在学校、家庭、社会中与同学、老师、父母的人际交往现实,课前完成一个调查任务、每人调查四位同学,配合活动、训练,能有效地指导他们未来的生活。
2.以学生发展为本。
针对中职生人际交往的实际设计了教学内容,帮助学生提高人际交往的能力,克服人际交往的障碍。在课堂中通过“动之以情、晓之以理、导之以行、持之以恒”的教学过程,帮助学生实现助人自助的教学目的。
(一)知识目标:
1.掌握人际交往障碍产生的原因。
2.了解基本的人际交往的方法与技能。
(二)能力目标:
1.学会分析人际交往障碍的主要原因。
2.掌握人际交往的基本方法和技能。
(三)情感、态度、价值观目标:
1.能够积极面对人际交往中出现的困惑与障碍。
2.能够主动与人交往,拥有稳定的情绪状态。
(一)教学重点:
1.学会分析人际交往障碍的原因。
2.掌握人际交往的基本技巧并运用于日常生活。
(二)教学难点:
学会运用人际交往的基本方法与技巧。
(二)学法:自主学习法、合作学习法、体验学习法、问题解决学习法等
(一)导入课题:
1.播放歌曲,导入新课。播放周华健的《朋友》,引入课程主题……友谊。
2.提问:“人为什么要有友谊?”,引出马斯洛的需要层次理论,重点讲述爱的需要即社交的需要和尊重的需要。说明人是社会的人,要有人与人之间的交往,才能满足个体爱与尊重的需要。
(二)人际交往的体验:
1.进行“囊中失物”活动,体验人际沟通的方法。
通过活动和讨论,让学生体验解决问题的方法:当同学之间面对同样一个问题表现出不同的态度时,通过尊重、理解、宽容达到共识,并有效配合,共同解决问题。
2.展示课前调查――“人际交往障碍”的结果。
通过讨论和分享,引出人际交往障碍的原因和解决方法。
3.观看视频《亮剑》片断,引出人际交往的倾听、赞美、沟通、互助的技巧,重点介绍倾听的技巧。
(三)人际交往的训练:
1.进行“听与说”活动,练习倾听技巧。
(1)请学生分享活动的感悟。
(2)根据学员的表现来评价哪些表现是好的倾听。
(四)课堂小结:
1.了解自己的人际交往状况、障碍及原因。
2.掌握基本的人际交往的方法与技巧。
(五)拓展训练:
课后完成以下两个拓展训练的任务:
(1)编排校园心理剧。要求学生自愿编组,合作编排一个校园心理剧,以友情为主题,选择一个视角,比如同学人际交往中容易出现的某种障碍,并寻求解决问题的办法。
(2)“皮格马利翁效应”活学活用。
找一个你最想与之改善关系的人,结合皮格马利翁效应,主动与对方交往,看看有什么样的事情发生。
概率课件 篇6
概率统计复习重点:
1.全概率公式应用题。
练习题:有两只口袋,甲袋装有a只白球,b只黑球,乙袋中装有n只白球,m只黑球,(1)从甲袋中任取1球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。
(2)从甲袋中任取2球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。
(3)从甲袋中任取3球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。
2.一个正态总体方差的区间估计。两个正态总体的区间估计不考。
3.二维连续型随机变量联合概率密度函数及其性质,边缘概率密度函数的求法,判断两个
随机变量的独立性。
4.已知二维连续型随机变量的联合概率密度函数,求两个随机变量的数学期望,协方差。5.6.7.8.一个正态总体均值的假设检验,方差未知。两个正态总体的假设检验不考。切比雪夫不等式。会求两随机变量的函数的相关系数。样本方差与样本二阶中心矩的关系。
9.常见分布如均匀分布、正态分布、泊松分布的数学期望和方差;数学期望与方差的性质。
10.条件概率公式、加法公式。
11.矩估计、无偏估计。
概率统计复习重点:
1.全概率公式应用题。
练习题:有两只口袋,甲袋装有a只白球,b只黑球,乙袋中装有n只白球,m只黑球,(1)从甲袋中任取1球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。
(2)从甲袋中任取2球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。
(3)从甲袋中任取3球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。
2.一个正态总体方差的区间估计。两个正态总体的区间估计不考。
3.二维连续型随机变量联合概率密度函数及其性质,边缘概率密度函数的求法,判断两个
随机变量的独立性。
4.已知二维连续型随机变量的联合概率密度函数,求两个随机变量的数学期望,协方差。
5.一个正态总体均值的假设检验,方差未知。两个正态总体的假设检验不考。
6.切比雪夫不等式。
7.会求两随机变量的函数的相关系数。
8.样本方差与样本二阶中心矩的关系。
9.常见分布如均匀分布、正态分布、泊松分布的数学期望和方差;数学期望与方差的性质。
10.条件概率公式、加法公式。
11.矩估计、无偏估计。