好心情说说吧,你身边的情绪管理专家!

好心情说说专题汇总 心情不好怎么办

励志的句子

每个老师都必须认真准备自己的教案课件,因为教案课件是教学工作的必要起点。它不仅能够促进新老师的自信心,还能够帮助教师深入理解教学内容。在网上,有许多值得推荐的优秀教案课件。励志的句子为您准备的“函数课件”绝对会让您眼前一亮,期望它能为您提供帮助!

函数课件 篇1

人教版 数学 八年级 上册

第十四章

一次函数

§14.1.2 函数

案 设 计 说 明

江西省赣州市文清实验学校 谢志华

【教学设计说明】

这节课本着以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认识规律。整个教学过程突出以下构想:(1).创设情境,引人入胜

首先根据学生的认知基础,播放一组生活中熟悉的体现运动变化的课件视频与图片,激发学生的求知欲,使学生感知变量和函数的存在和意义,体会变量之间的相互依存关系和变化规律,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。

(2).过程凸现,紧扣重点

函数概念的形成过程是本节的重点。所以本节突出概念形成过程的教学。首先列举学生熟悉例子,引导学生从实例中观察分析探索变量之间的规律,抽象出函数的概念。然后提出注意问题,帮助学生把握概念的本质特征,再通过生活中的函数举例进一步理解函数的概念,最后引导学生运用概念并及时反馈,同时在概念的形成过程中,着意培养学生观察分析抽象概括的能力。引导学生从运动变化的角度看问题时,向学生渗透唯物主义观点的教育。(3).动态显现,化难为易

本节课的难点是理解函数概念。教学活动中充分利用多媒体有声有色有动感的画面,使抽象的问题形象化,静态方式的动态化,直观深刻地揭示函数概念的本质。不仅叩开学生的思维之门,也打开他们的心灵之窗,使他们在欣赏享受中,在美的熏陶中主动地轻松愉快地获得新知。

(4).例子展现,多方渗透

为了使抽象的概念具体化,通俗易懂,本节列举了大量的生活中的例子和其他学科中的例子,培养学生的发散思维,加强学科间的渗透,知识间的联系,也增强学生学数学的意识。

函数课件 篇2

当______时,随的增大而增大;

当______时,随的增大而减小.

当______时,随的增大而增大;

观察学生完成问题情况,并适时给予点拨。学生展示,师生共同评价完善。

1. 函数的图象可由的图象向平移 个单位长度得到;

函数的图象可由的图象向平移 个单位长度得到.

2. 将函数的图象向平移 个单位可得函数的图象;

将函数的图象向平移 个单位长度可以得到函数的图象;

将函数的图象向平移 个单位可得到的图象.

3. 将抛物线向上平移3个单位,所得的抛物线的表达式是 .

将抛物线向下平移5个单位,所得的抛物线的表达式是 .

4. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,当时,随的增大而 ,当时,随的增大而 ,当 时,函数取得最 值,这个值等于 .

5. 抛物线的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,随的增大而 ,在对称轴的右侧,随的增大而 ,当x= 时,函数取得最 值,这个值等于 .

6.二次函数的图象经过点A(1,-1),B(2,5),则函数的表达式为 ;若点C(-2,m),D(n ,15)也在函数的图象上,则点C的坐标为 ,点D的坐标为___________

函数课件 篇3

反比例函数是继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数基础之上,而又服务于以后更高层次函数的学习,以及为函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数。具体老师评课如下:

刘霞:通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。

在本节课的复习过程中,渗透着建模思想、函数思想、数形结合思想、方程以及方程组的思想,这些思想也为后面学习二次函数的应用奠定了基础。

而利用反比例函数解决实际问题的基本步骤是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。

孙法圣:巩固反比例函数的概念,会求反比例函数表达式并能画出图象。 巩固反比例函数图象的变化及性质并能运用解决某些实际问题。

李杰:可以说从复习课的角度来说这样安排教学目标是恰如其分的,使数学教学课标要求当中的了解、掌握、直至应用都考虑到了体现。

牛媛:首先通过提问的方式梳理有关反比例函数的知识点(如:定义,表示法,图像性质),形成知识体系。尔后给出三道例题,学生做完后由学生板演再师生共同分析,最后学生再完成自我测验题。(冯老师精心设计本节课教学内容并通过印刷试卷给予呈现。)通过这些难度不同的习题来渗透反比例函数的相关知识与性质以及数学思想方法。使基础薄弱的学生能听得懂做一些,也使学有余力的学生学习能力得到进一步的提升,面向全体,使每一位学生都学有所得,另一方面也符合学生的认知特点和认知规律。

梁淑祯:应该说冯老师能较好地完成了本节课的教学任务,实现了既定的教学目标,达到了一定的教学效果,数学思想方法都能从例题教学中得到了体现。总体上落实以教师为主导,学生为主体,练习为主线的复习课教学模式。

在教学基本功方面:冯老师深入研读课标,钻研教学大纲,吃透教材,形成自己独到的见解,把握教材准确、恰当,难易适中,重点空出,紧紧抓住数形结合的思想来求解有关反比例函数的应用问题。

板书工整有示范性,有启发性,如在学生板演出现错误时给予及时纠正并用彩色笔加以区别经引起学生的特别注意。灵活地把黑板分成4大板面,内容紧凑

又分明、清晰,主板书和副板书一目了然。个人以为在学生不能很好地完成书写过程时,教师不应把板演的任务交给学生,虽说教师已加以修改和订正,但看起来已经不够整洁,也不美观。这样在一定程度上就降低了板书对示范性和启发性要求。

教师上课娓娓道来,循循善诱,声音柔和,具有校强的语言功底,这有利于学生静心思考,与学生容易形成思维的碰撞,易于与学生达到心灵上的勾通,交流。不过引起注意是要多注视数学语言的生动有趣、简洁明了、富于启发的.特点,特别当学生情绪处于低落之时,若能制造轻松愉快的课堂氛围,就更有利于学生的思考。当学生在思维处于山重水复疑无路时,教师应适时加以启发以让学生的思维得到进一步的深入,以期达到柳岸花明又一春的境界,这样也许更好。

教师具有较强地把握课堂的能力,得心应手地实施教学设想。

教师从概念入手引发性质,步步为营,有利于知识重组,形成知识体系,然后抛出例题由学生解答,学以致用。

教师首先提问学生反比例函数的定义及性质如:图像的位置、单调性、函数表达式的两种表示方式(少了一种,应有三种),由学生共同回答,当学生无法回答出反比例函数当k 的值互为相反数时图像的两支关于x轴或y轴成轴对称(最好补充关于原点成中心对称)时,老师能给予及时的启发,让学生的思维得以顺利地进行(启发略嫌生涩)。接着进入典型例题的讲解,例题1两个小题是关于反比例函数解析式的求解以及实际的应用,其中涉及到解析式两个解取一个的情况,另一个解是负数不合实际意义,要舍去。解析式的求法用到了待定系数法,根据过函数反比例函数图像上任意一点作x轴或y轴的垂线,以垂足、该点和原点这三个点为顶点的三角形的面积的两倍就是k绝对值。若设这一点的坐标为(a,b),则k=ab。教师在讲解完该题时若能及时给予归纳就有画龙点睛的作用了,也更有深入浅出之意境,这样将大大提高了学生掌握和应用知识的能力。另外教师采用由学生到黑板析演的方式,而不是先由自己板书再让学生做下面第二题时再让学生板书,有暴露学生解题过程之不足之意,此种做法的效率个人以为有待于进一步商榷。

复习旧知时由学生一人主讲,让其他学生补充的方式。复习完旧知时,教师在不改变例题作用和降低例题使用效果的情况把三道例题结合为一道大例题,这样能节省学生因审题而花费的时间,也使题目的从易到难,层层深入,步步为营,同时照顾到了全体学生,使每个学生都能学有所获,也能让本节课不至于太沉闷。尔后,在讲解完例题后,还可留出一些时间给学生归纳反比例函数解题时所涉及的思想方法,让数学思想方法成为学生学习数学的导航器。

函数课件 篇4

教学设计说明

一、本课数学内容的本质、地位、作用分析

本节课内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,反比例函数的核心内容是反比例函数的概念、图象和性质.反比例函数的图象和性质的核心,是图象“特征”、函数“特性”以及它们之间的相互转化关系,这也正是反比例函数的本质属性所在.

反比例函数是最基本的初等函数之一,是继一次函数学习之后,对函数学习的一般规律和方法的再次强化.是学习后续各类函数的基础.反比例函数的图象和性质,蕴含着丰富的数学思想.首先,反比例函数图象和性质,本身就是“数”与“形”的统一体.其次,从本节课知识的形成过程来看,由“解析式”到“作图”,再到“性质”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是转化思想的具体应用.再次,将函数中变量x、y之间的对应关系,通过图象的形状、变化趋势,借助平面直角坐 标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想.

因此,学好本节课内容将为今后的函数学习奠定坚实的基础.

二、教学目标分析

1.准确画出反比例函数的图象,是探究反比例函数性质的前提.虽然学生已经学过用描点法画函数图象,但是由于反比例函数图象的特殊性,会画反比例函数的图象,仍是学习中的目标之一.通过列表、描点、画出反比例函数的图象,进而观察、分析、探究、归纳、概括,得到反比例函数的性质,可以进一步加深对函数三种表示方法(列表法、解析式法和图象法)的理解;

2.数学思想的教学一般要经过渗透孕育期、领悟形成期、应用发展期、巩固深化期四个阶段,而非能复制与灌输.在探究反比例函数性质时,让学生领悟到数形结合思想、转化思想、变化与对应思想的存在,并能运用这些数学思想观察、分析反比例函数的图象,探究、归纳、概括反比例函数的性质.

3.通过对反比例函数性质探究,使学生经历观察、分析、探究、归纳、概括的认知过程,培养学生良好的思维品质,提高学生思维能力.

三、教学问题诊断

对于用描点法画函数的图象,学生已经学过,但对每步要求的理解并不深刻.因此,在画反比例函数图象时,常遇到如下的问题:(1)“列表”时确定自变量x的取值缺乏代表性及忽略x0等现象;(2)“连线”时,由于一次函数图象是一条直线,容易使学生产生知识上的负迁移,把双曲线画成折线;(3)对双曲线与x轴、y轴“越来越靠近”但不相交的趋势不易理解.

在学习一次函数的时候,学生已经对研究函数性质所用的探究方法也有一定的了解,但由于反比例函数图象比一函数图象的形态丰富,结构复杂,具有自身的特殊性,故对性质的深刻理解和掌握,对性质探究中的数学思想的体会和运用,还存在一定的困难.

四、教法、学法特点分析 1.找准切入点

从正比例函数切入,通过类比学习揭示本节课学习内容,明确学习任务;渗透探究反比例函数图象和性质的方法.

2.抓住关键点

准确作出反比例函数的图象是探究性质的前提,探究性质的关键是“形”与“数”间的转化.

① 作图

(Ⅰ)描点法作图不是简单的复习与应用.“列表——描点——连线”体现的是描点法作图的一般步骤,而思维的真正起点在于对“解析式”中常量、变量以及变量间关系的分析(k0,x、y的取值以及x与y间的反比例关系),进而对函数图象的大致轮廓形成影象.这也是函数学习中作一般函数图象的思维规律.

(Ⅱ)连线时需防止学生受一次函数图象是一条直线的影响,而产生认识负迁移,把曲线连成折线.

(Ⅲ)图象由 “一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,折射出函数学习的深刻性,是继一次函数后,知识上的一次拓展,理解与认识上的一次升华,也是思维上的一次飞跃.

②“形”与“数”间的转化

(Ⅰ)反比例函数性质本身就是“数”与“形”的整合体.(Ⅱ)探究反比例函数性质的思维主线是“数”“形”间的转化.(Ⅲ)“数形结合”是研究函数性质的一般方法. 3.注重发散点

反比例函数的性质是教材中的一个发散点.可以给学生一个更广阔的思维空间,让学生经历观察、类比、猜想、知识拓展的过程,在思维的“最近发展区”内,提出更新的问题,得出更多的结论.但如何发散,有个“度”的把握问题,诸如:k的几何意义;反比例函数ykk与反比例函数y图象的对称关系,反比例函数增减性的严格证明等,我的想法

xx是作为下节内容或以后结合例题去研究.

4.教学过程紧扣“三条主线”

教学中突出三条主线,并注重三条主线的和谐发展.

一是知识的“产生(反比例函数的图象是什么样的?)——发展(描点法作图、探究)——形成(反比例函数的图象和性质)——应用”主线;二是学生“动手(作图)——探究(观察、类比、猜想、交流)——巩固(练习)”的活动主线;三是教师“指导作图(列表:自变量取值, 连线:曲线的间断、大致趋势等)——引导探究(类比)——解析(归纳、概括、)——评价”的因“学”施“教”过程.

4.注重思想方法的培养

反比例函数的图象和性质,蕴含着丰富的数学思想.首先,反比例函数图象和性质,本身就是“数”与“形”的统一体.通过对图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法.这在学习数轴、平面直角坐标系时,学生已经接触过,结合本课内容,可以进一步加强对数形结合思想方法的理解,发挥从“数”和“形”两个方面共同分析解决问题的优势.其次,从本节课知识的形成过程来看,由“解析式(确定自变量取值范围)”到“作图(列表、描点、连线)”,再到“性质(观察图象探究性质)”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,这种函数解析式及性质与函数图象之间的联系,突出体现了两者间的转化对分析解决问题的特殊作用,是转化思想的具体应用.再次,将函数中变量x、y之间的对应关系,通过图象的形状、变化趋势“细微”到点,借助平面直角坐标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想.

5.注重学法指导

对于反比例函数图象及性质的研究与学习,尽管还处于函数学习的初级阶段,但它所体现的函数学习的一般规律和方法,是继一次函数学习之后的再一次强化.教材中呈现的“函数概念——函数的图象和性质——函数的实际应用”的结构,是学习初等函数时不可或缺的.使学生理解这样的“同构现象”,对于明确学习任务,建立完善的认知结构也将是非常有意义的.再有,用描点法画反比例函数的图象时,先由函数解析式考虑自变量的取值范围,分析x、y的对应变化关系,然后构思函数图象的大致位置、轮廓、趋势,进而列表、描点、连线作出函数图象,反映了作函数图象的一般规律.另外,利用图象“特征”确定函数“特性”,也是初中阶段研究函数性质的常用方法.

函数课件 篇5

对数函数是我们学习数学需要学到的,看看下面的相关练习题吧!

解析:[3-52] =(352) =5 × =5 =5.

2.若log513log36log6x=2,则x等于        (  )

解析:由换底公式,得lg 13lg 5lg 6lg 3lg xlg 6=2,

∴-lg xlg 5=2.

∴lg x=-2lg 5=lg 125.∴x=125.

3.(江西高考)若f(x)= ,则f(x)的定义域为   (  )

A.(-12,0)       B.(-12,0]

解析:f(x)要有意义,需log  (2x+1)>0,

4.函数y=(a2-1)x在(-∞,+∞)上是减函数,则a的取值范围是  (  )

5.函数y=ax-1的定义域是(-∞,0],则a的取值范围是    (  )

解析:由ax-1≥0得ax≥1,又知此函数的定义域为(-∞,0],即当x≤0时,ax≥1恒成立,∴0

6.函数y=x12x|x|的图像的大致 形状是         (  )

解析:原函数式化为y=12x,x>0,-12x,x

7.函数y=3x-1-2,   x≤1,13x-1-2,  x>1的值域是      (  )

C.(-∞,-1]       D.(-2,-1]

解析:当x≤1时,0

∴-2

则-2

8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图像为

解析:由题意知前3年年产量增大速度越来越快, 可知在单位时间内,C的值增大的很快,从而可判定结果.

9.设函数f(x)=log2x-1, x≥2,12x-1,  x<2,若f(x0)>1,则x0的取值范围是  (  )

∴log2(x0-1)>1,即x0>3;当 x01得(12)x0-1>1,(12)x0>(12)-1,

10.函数f(x)=loga(bx)的图像如图,其中a,b为常数.下列结论正确的是   (  )

B.a>1,0

又f(1)>0,即logab>0=loga1,∴b>1.

11.若函数y=13x x∈[-1,0],3x  x∈0,1],则f(log3 )=________.

解析:∵-1=log3∴f(log3 )=(13)log3 =3-log3 =3log32=2.13.若函数y=2x+1,y=b,y=-2x-1三图像无公共点,结合图像求b的取值范围为________.当-1≤b≤1时,此三函数的图像无公共点.14.已知f(x)=log3x的值域是[-1,1],那么它的反函数的值域为________.∴log313≤log3x≤log33,∴13≤x ≤3.∴f(x)=log3x的定义域是[13,3],∴f(x)=log3x的反函数的值域是[13,3].15.(12分)设函数y=2|x+1|-|x-1|.(1)讨论y=f(x)的单调性, 作出其图像;(2)求f(x)≥22的'解集.解:(1)y=22,  x≥1,22x,  -1≤x1,若对于任意的x∈[a,2a ],都有y∈[a,a2]满足方程logax+logay=3,求a的取值范围.解:∵logax+logay=3,∴logaxy=3.∴xy=a3.∴y=a3x.∴函数y=a3x(a>1)为减函数,又当x=a时,y=a2,当x=2a时,y=a32a=a22 ,∴a22,a2[a,a2].∴a22≥a.又a>1,∴a≥2.∴a的取值范围为a≥2.17.(12分)若-3≤log12x≤-12,求f(x)=(log2x2)(log2x4)的最大值和最小 值.=(log2x)2-3log2x+2=(log2x-32)2-14.又∵-3≤log x≤-12,∴12≤log2x≤3.∴当log2x=32时,f(x)min=f(22)=-14;当log2x=3时,f(x)max=f(8)=2.18.(14分)已知函数f(x)=2x-12x+1,(1)证明函数f(x)是R上的增函数;(2)求函数f(x)的值域;(3)令g(x)=xfx,判定函数g(x)的奇偶性,并证明.解:(1)证明:设x1,x2是R内任意两个值,且x10,y2-y1=f(x2)-f(x1)=2x2-12x2+1-2x1-12x1+1 =22x2-22x12x1+12x2+1=22x2-2x12x1+12x2+1,当x10.又2x1+1>0,2x2+1>0,∴y2-y1>0,∴f(x)是R上的增函数;(2)f(x)=2x+1-22x+1=1-22x+1,∵2x+1>1,∴0

函数课件 篇6

教学目标

(一)知道函数图象的意义;

(二)能画出简单函数的图象,会列表、描点、连线;

(三)能从图象上由自变量的值求出对应的函数的近似值。

教学重点和难点

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

教学过程设计

(一)复习

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

5.请在坐标平面内画出A点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

(二)新课

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

课堂教学设计说明

1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。

2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。

3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。

4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。

5.作业中的第1-3题,对训练函数图象很有帮助。

第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。

第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x

第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。

函数课件 篇7

一.内容和内容解析

【内容】变量与函数的概念

【内容解析】

“14.1变量与函数”是人教版义务教育课程标准实验教科书八年级上册第十四章第一单元,本设计是第1课时,引导学生从生活实例中抽象出常量、变量与函数等概念,其中函数的概念是本节核心内容.函数概念的核心是两个变量间的特殊对应关系:(1)由哪一个变量确定另一个变量;(2)唯一对应关系.如果直接研究某个量y有一定困难,我们可以去研究另一个与之有关的量x,从而达到研究的目的.这也是一种化繁为简的转化思想.

本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到研究主要从化繁就简入手,在初中阶段主要研究两个变量之间的特殊对应关系.本设计把重点放在认识“两个变量间的特殊对应关系:由哪一个变量确定另一变量;唯一确定的含义.” 而函数图象较为直观形象,有助于学生理解函数的概念,因此把函数图象中的部分内容提前到本课时学习.

二.目标和目标解析

【目标】理解常量、变量与函数的概念.

【目标解析】

(1)借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系.初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系.

(2)借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.

(3)从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.

三、教学问题诊断分析

变量与函数的概念把学生由常量数学的学习引入变量数学学习中.学生知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.

【教学重点】借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念.

【教学难点】怎样理解“唯一对应”.

四、教学过程设计

(一)导言:

1.《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?

2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?

问题1中都涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.这一节课我们研究两个量的关系,研究怎样由一个量来确定另一个量.

【设计意图】从学生的生活入手,开门见山,在极短的时间(一两分钟)内指明本节课的学习内容.现实世界中各种量之间的联系纷繁复杂,应向学生说明我们数学的研究方法是化繁就简,本节课只关注一类简单的问题.

(二)概念的引入

1.票房收入问题:每张电影票的售价为10元.

(1)若一场售出150张电影票,则该场的票房收入是 元;若售出205张、310张呢?

(2)若一场售出x张电影票,则该场的票房收入y元,则y= .

思考:

(1)票房收入随售出的电影票变化而变化,即y随的变化而变化;

(2)当售出票数x取定一个确定的值时,对应的票房收入y的取值是否唯一确定?

2.成绩问题:如图是某班同学一次数学测试中的成绩登记表:这一次数学测试中,13号的成绩为______;15号的成绩为______;16号的成绩为______;23号的成绩为______.

思考:

(1)测试成绩随________的变化而变化;

(2)任意确定一个学号x,对应的成绩f的取值是否唯一确定?

3.气温问题:图一是抚顺春季某一天的气温T随时间t变化的图象,看图回答:

(1)这天的8时的气温是 ℃,14时的气温是 ℃,最高气温是 ℃,最低气温是 ℃;

(3)这一天中,在4时~12时,气温( ),在16时~24时,气温( ).

A.持续升高 B.持续降低 C.持续不变

思考:

(1)天气温度随的变化而变化,即T随的变化而变化;

(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?

【设计意图】这三个问题中都含有变量之间的单值对应关系,通过研究这些问题引出常量、变量、函数等概念,通过这种从实际问题出发开始讨论的方式,使学生体验从具体到抽象地认识过程.问题的形式有填空、列表、求值、写解析式、读图等,隐含着在函数关系中表示两个变量的对应关系有解析法、列表法、图象法.

(三)概念的界定

思考:上述三个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?

在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫做变量;有些量的值始终不变(例如电影票的单价10元……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个.

教师根据学生的回答,在黑板上板书:

师生对上述三个问题进行分析,找出它们的共性,归纳出函数的概念.

【设计意图】(1)如何把具体的实例进行抽象,形式化为数学知识是本课的关键.这里提出的问题“上述三个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?”是一个关键的“脚手架”,借助“脚手架”,学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量、函数的概念,逐步了解如何给数学概念下定义.(2)此处板书是“脚手架”的重要组成部分,揭示“两个量的对应关系”.

问题回顾:指出前面三个问题中涉及到的量,并指出其中的变量、常量、自变量与函数.

【设计意图】巩固常量、变量、自变量、函数的概念.

例1 一个三角形的底边为5,这一边上的高h可以任意伸缩.

(1)高h的变化会引起三角形中哪些量发生变化?这些变量是高h的函数吗?

(2)试求面积s随h变化的关系式,并指出其中的'常量、变量与自变量。

例2如果用r表示圆的半径,半径r的变化会引起圆中哪些量发生变化?这些变量是半径r的函数吗?

【设计意图】例1、例2的引入用几何画板做动态演示.此两例引导学生体会几何问题中两个变量在动态变化过程中的依存关系.

例3 问题1中,售出票数是票房的函数吗?问题2中,学号x是成绩f的函数吗?

【设计意图】(1)引导学生从逆向思维的角度进行思考,更全面地理解函数的概念.(2)培养学生逆向思维的习惯.(3)让学生对这三个问题留下更深刻的印象,特别是“成绩问题,”它将在函数这一章书的教学中反复被引用,帮助学生深入理解函数的概念.

(四)概念巩固

1.购买一些签字笔,单价3元,总价为y元,签字笔为x支,根据题意填表:

(1)y随x变化的关系式y = , 是自变量, 是 的函数;

(2)当购买8支签字笔时,总价为 元.

2.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离s(千米)与时间t(时)的关系如图所示.

(1)当t=12时,s=________;当t=14时,s=________;

(2)小李从______时开始第一次休息,休息时间为____小时,此时离家______千米.

(3)距离s是时间t的函数吗?时间t是距离s的函数吗?

函数课件 篇8

三、教具准备

引导:回顾旧知识,引入新知识。问题:据了解目前市场的鱼是8元/斤 ,顾客买鱼所付的价钱y(单位:元)与买鱼的重量x(单位:斤)变化而变化。请同学们列出函数关系式:

探索研究:

下列问题中的变量对应规律可用怎样的函数表示?

32r /cm,铁块的质量m(单位:g)随它的体积V(单3位:cm)的大小变化而变化;m7.8V

(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;h0.5n

(4)冷冻一个00c的物体,使它每分下降2c,物体的温度T(单位:c)00随冷冻时间t (单位:分)的变化而变化。T

刚才所列出的函数都是常数与自变量的乘积的形式。 y8x一样,

观察一下其中2,7.8,0.5,2,8都是常量,我们统一用k来表示,r,V,n,t,x都是变量,我们用x来表示,函数l,m,h,T,y统一由y表示。则以上式子我们不难给它找到一个通式

组织练习巩固知识点。

研究正比例函数图像:下面我们一起来看一个相对简单的函数式ykx(其中k为常数,k0)。 y2x 请同学们用列图表描点画图像的步骤,先在草稿本上画出图表,然后同学们自己画出该函数的'图像。总结归纳出一些函数性质。

同学们再用相同的方法快速做出y比较一下两函数之间有2x的函数图像,

什么异同之处。

通过学习,我们知道了些什么呢,我们来梳理一下我们今天所学习的内容。 首先,我们会根据问题列出一些形如ykx的函数关系式。

0时,y随x我们还研究了它的一些特性。知道图像过原点(0,0)。当k

的增大而增大,当k0时,y随x的增大而减少。

总结本堂课所学重点。

下来同学们再去生活中采集一些关于正比例函数的应用,后面的内容我们下节课接着讲,今天的作业是习题14.2-1、2、4(1)

函数课件 篇9

(1)开口___________;

(2)对称轴是___________;

(3)顶点坐标是___________;

(4)当时,随的增大而___________;

当时,随的增大而___________;

(5)函数图象有___________点,函数有___________值;

当_____时,取得__________值____.

问题:那二次函数的图象会是什么样子呢?它会有哪些性质呢?它与的图象有关系吗?

Ⅱ.自主探索、小组互学、展学提升:

(2)观察、思考并与同伴交流完成“议一议”

(3)一小组派代表展示,其它小组与老师评价、完善。

(1)作出二次函数的图象:

议一议:

仔细观察,用心思考,与同伴交流:

(1)二次函数的图象是什么样子?

(2)它的开口方向是什么?

(3)它是轴对称图形吗?对称轴是谁?

(4)它的顶点坐标是什么?

(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

此时,等于多少?

(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

教师巡视,察看学生完成情况并适时给予指导。

当学生展开讨论时,参与到学生的交流中启发、点拨学生的思维。

学生通过上一环节的作图、观察、比较、归纳、交流讨论等过程,已经积累了一些方法和经验,所以此环节由学生自己独立完成:

(1)作出二次函数的图象;

(2)观察、思考完成“想一想”

(3)一学生展示,其他同学与老师评价、完善。

问:

二次函数的图象会是什么样子?它与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?它图象的开口方向、对称轴、顶点坐标是什么?它的增减性、最值是什么情况呢?请你先猜一猜,然后做出它的图象观察思考,你猜的对吗?

(1)作出二次函数的图象:

(1)二次函数的图象是什么样子?

(2)它的开口方向是什么?

(3)它是轴对称图形吗?对称轴是谁?

(4)它的顶点坐标是什么?

(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?

(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?

此时,等于多少?

(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?

教师巡视,察看学生解决问题情况并适时指导.之后请学生展示,师生共同评价完善.

Ⅳ.自主探索、小组互学、展学提升:

学生在前面作图、观察、思考、交流讨论的基础上,完成“猜一猜”,然后师生共同利用计算机进行验证。最后,学生在交流讨论的基础上总结二此函数的性质。

猜一猜:

(1)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质.

(2)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质.

议一议:

(1)二次函数的图象与二次函数的图象有什么关系?

(2)二次函数的性质:

函数课件 篇10

2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是( )

4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b

(C)y= (D)y=

8.若函数y=32x-1的反函数的图像经过P点,则P点坐标是( )

(A)(2,5) (B)(1,3) (C)(5,2) (D)(3,1)

10.已知函数f(x)=ax+k,它的.图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )

(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3

11.已知01,b-1,则函数y=ax+b的图像必定不经过( )

12.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )

(A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n

13.若a a ,则a的取值范围是 。

14.若10x=3,10y=4,则10x-y= 。

15.化简= 。

18.(12分)若 ,求 的值.

19.(12分)设01,解关于x的不等式a a .

20.(12分)已知x [-3,2],求f(x)= 的最小值与最大值。

21.(12分)已知函数y=( ) ,求其单调区间及值域。

22.(14分)若函数 的值域为 ,试确定 的取值范围。

题号 11 12 13 14 15 16 17 18 19 20

4.(- ,0) (0,1) (1,+ ) ,联立解得x 0,且x 1。

5.[( )9,39] 令U=-2x2-8x+1=-2(x+2)2+9,∵ -3 ,又∵y=( )U为减函数,( )9 y 39。 6。D、C、B、A。

令y=3U,U=2-3x2, ∵y=3U为增函数,y=3 的单调递减区间为[0,+ )。

8.0 f(125)=f(53)=f(522-1)=2-2=0。

9. 或3。

Y=m2x+2mx-1=(mx+1)2-2, ∵它在区间[-1,1]上的最大值是14,(m-1+1)2-2=14或(m+1)2-2=14,解得m= 或3。

11.∵ g(x)是一次函数,可设g(x)=kx+b(k 0), ∵F(x)=f[g(x)]=2kx+b。由已知有F(2)= ,F( )=2, , k=- ,b= ,f(x)=2-

1.∵02, y=ax在(- ,+ )上为减函数,∵ a a , 2x2-3x+1x2+2x-5,解得23,

2.g[g(x)]=4 =4 =2 ,f[g(x)]=4 =2 ,∵g[g(x)]g[f(x)]f[g(x)], 2 2 ,22x+122x, 2x+12x,解得01

3.f(x)= , ∵x [-3,2],.则当2-x= ,即x=1时,f(x)有最小值 ;当2-x=8,即x=-3时,f(x)有最大值57。

4.要使f(x)为奇函数,∵ x R,需f(x)+f(-x)=0, f(x)=a- =a- ,由a- =0,得2a- =0,得2a- 。

5.令y=( )U,U=x2+2x+5,则y是关于U的减函数,而U是(- ,-1)上的减函数,[-1,+ ]上的增函数, y=( ) 在(- ,-1)上是增函数,而在[-1,+ ]上是减函数,又∵U=x2+2x+5=(x+1)2+4 4, y=( ) 的值域为(0,( )4)]。

由函数y=2x的单调性可得x 。

7.(2x)2+a(2x)+a+1=0有实根,∵ 2x0,相当于t2+at+a+1=0有正根,

8.(1)∵定义域为x ,且f(-x)= 是奇函数;

(2)f(x)= 即f(x)的值域为(-1,1);

(3)设x1,x2 ,且x1x2,f(x1)-f(x2)= (∵分母大于零,且a a ) f(x)是R上的增函数。

函数课件 篇11

数学必修1第二章《基本初等函数》之

《3.3幂函数》

教学反思[励志的句子 djz525.com]

幂函数作为一类重要的函数模型,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究yx,yx,yx2,yx1,yx3等函数的图象和性质,让学生认识到幂12指数大于零和小于零两种情形下,幂函数的共性:当幂指数0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为淅近线,在方法上,我们应注意从特殊到一般进行类比研究幂函数的性质,并注意与指数函数进行对比学习。

将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已学习了yx,yx2,yx1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识,现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。所以本人建议,逐个画出五个函数的图象,从定义域、值域、奇偶性、单调性、过定点等方面进行分析、探究,得到各自的性质,从而再归纳出幂函数的基本性质。除内容本身外,掌握研究函数的一般思想方法也是至关重要的。

学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。

函数课件 篇12

§5 简单的幂函数(第1课时)

交大二附中

刘正伟

一、课标三维目标:

1.知识技能:了解简单幂函数的概念;通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法:通过作函数图像,让学生体会幂函数图像的特点,会利用定义证

明简单函数的奇偶性,了解利用奇偶性画函数图像和研究函数的方法。

3.情感、态度、价值观:进一步渗透数形结合与类比的思想方法;培养从特殊归

纳出一般的意识,体会幂函数的变化规律及蕴含其中的对称性。

二、教学重点与难点:

重点:幂函数的概念,函数奇、偶性的概念。

难点:判断函数的奇偶性。

三、学法指导:

通过数形结合,类比、观察、思考、交流、讨论,理解幂函数的概念和函数的奇偶性。

四、教学方法:

对奇偶性要求不高,题目不需要过难,尽量用多媒体和计算机画函数的图像,重在从图上看出图像关于谁对称,着重从对称的角度应用这一性质,培养学生自己归纳总结的能力。

五、教学过程:

(一)创设情境(生活实例中抽象出几个数学模型)

1.如果张红购买每千克1元的蔬菜x千克,那么她需要付的钱数 p=x元,这里p是s的函数.2.如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.3.如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数

4.如果正方形场地的面积为S,那么正方形的边长a=S1/2,这里a是S的函数.5.如果某人t s内骑车行进了1km,那么他骑车的平均速度 v=t-1km/s,这里v 是t的函数.【思考】上述函数解析式有什么形式特征?具有什么共同点?(教师将解析式写成指数幂形式,以启发学生归纳,板书课题并归纳幂函数的定义。)

(二)探究幂函数的概念、图象和性质

1.幂函数的定义

如果一个函数,底数是自变量x,指数是常量α,即y = x,这样的函数称为幂函数.如

α【练】为了加深对定义的理解,让学生判别下列函数中有几个幂函数?

212x2(1)y=x+x(2)y=(3)y=2(4)y=2(5)y=2x(6)y=x3xx 22.幂函数的图象和性质

【1】通过几何画板演示让学生认识到,幂函数的图象因a的不同而形状各异 【2】引导学生从5个具体幂函数的图象入手,研究幂函数的性质

① 画出yx,yx,yx,yx,yx1的图象(重点画y=x3和y=x1/2的图象----学生画,再用几何画板演示)

2312

学生活动:1.学生自己说出作图步骤,交流讨论单调性。

学生活动:2.观察交流,分析图像还有那些特点?

3.观察函数值和自变量取值有什么特点?

我们还可以看到,f(x)=x3 的图像关于原点对称.并且对任意的x,f(-x)=(-x)3=-x3,即f(-x)=-f(x).

(三)奇函数、偶函数的定义

一般地,图像关于原点对称的函数叫作奇函数,即f(-x)=-f(x);反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数。

2学生通过类比,自己找出偶函数的定义,可以建议利用y=x的图像特征?

一定是偶函数。

当函数f(x)是奇函数或偶函数时,称函数具有奇偶性。例1:画出下列函数的图像,判断奇偶性.(1)f(x)=-3x-1;

(2)f(x)= x2,x∈﹙-3,3〕

(3)f(x)= x2-3

;(4)f(x)= 2(x+1)2+1 图像关于y轴对称的函数叫作偶函数,即f(-x)=f(x);反之,满足f(-x)=f(x)的函数y=f(x)学生活动:思考讨论:

1.总结奇偶性对函数定义域的要求.2.总结利用图像法判断函数奇偶性

(四)根据定义法判断奇偶性

例2.判断f(x)=-2x5 和g(x)= x4 +2的奇偶性.

由于从图像上进行观察是一种常用而又较为粗略的方法,严格的说,它需要根据奇偶函数的定义进行证明。

学生自己先动手证明,教师一旁指导。要注意书写规范,并讨论交流定义法证明的步骤。

例3学生活动:动手实践

在图2-28 中,只画出了函数图象的一半,请你画出它们的另一半,并说出画法的依据.

结论:

在研究函数时,如果知道其图像具有关于原点或y轴对称的特点,那么我们可以先研究它的一半,再利用对称性了解另一半,从而可以减少工作量.

六.归纳小结:(学生自己交流总结)

1.本节课学习的主要知识是什么?

2.如何确定函数的奇偶性,其定义域有何特征?

3.思考讨论填写常用幂函数规律表。

七.作业:课本第50页A组1(2),2,3(1)(2),4

选做:B组、第2题

八.板书设计:

简单的幂函数

α一. 定义:形如y = x,α是常量.二. 奇、偶函数的定义: 三. 定义证明奇偶性。(教师板演)

八.教学反思:

转载请保留原文链接://www.djz525.com/a/5673526.html,并在标注文章来源。
上一篇 : 疫情防控工作简报
下一篇 : 打雪仗作文11篇
" 函数课件 " 相关阅读